
Table of Contents

Copyright... 1
 ... 3
Chapter 14. Kernel Debugging Techniques.. 4

Section 14.1. Challenges to Kernel Debugging.. 4
Section 14.2. Using KGDB for Kernel Debugging.. 6
Section 14.3. Debugging the Linux Kernel.. 14
Section 14.4. Hardware-Assisted Debugging... 53
Section 14.5. When It Doesn’t Boot.. 63
Section 14.6. Chapter Summary... 69

Chapter 15. Debugging Embedded Linux Applications............................... 72
Section 15.1. Target Debugging... 72
Section 15.2. Remote (Cross) Debugging.. 73
Section 15.3. Debugging with Shared Libraries... 80
Section 15.4. Debugging Multiple Tasks... 87
Section 15.5. Additional Remote Debug Options... 97
Section 15.6. Chapter Summary.. 99

Debugging Embedded Linux

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Debugging
Embedded Linux

Prentice Hall Open Source Software

Development Series

shortcut KERNEL DEBUGGING TECHNIQUES

14.1 Challenges to Kernel Debugging4

14.2 Using KGDB for Kernel Debugging 6

14.3 Debugging the Linux Kernel14

14.4 Hardware-Assisted Debugging 53

14.5 When It Doesn’t Boot63

14.6 Chapter Summary 69

DEBUGGING EMBEDDED LINUX APPLICATIONS

15.1 Target Debugging 72

15.2 Remote (Cross) Debugging 73

15.3 Debugging with Shared Libraries 80

15.4 Debugging Multiple Tasks 87

15.5 Additional Remote Debug Options . .97

15.6 Chapter Summary 99

Christopher Hallinan

prenhallprofessional.com

Prentice Hall Open Source Software Development Series

Debugging Embedded Linux Page 1 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this work, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this work, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or programs contained herein.

Visit us on the Web: www.prenhallprofessional.com

Copyright © 2007 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458
United States of America
Fax: (201) 236-3290
ISBN 0-13-158013-2

First release, August 2006

2 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 2 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Licensed by
eliad lubovsky

No matter how you approach it, Linux debugging will always be complex. The first part of this
Shortcut examines some of these complexities as they relate to kernel debugging and present ideas
and methods to improve your debugging skills, inside the kernel itself and then inside device
drivers. You begin by learning to use Kernel GNU Debugger (KGDB) to probe the kernel. But
because you cannot debug very early kernel startup code with KGDB, we also show you how to
work with a hardware debug probe. For the examples in this section, we use a unit manufactured
by Abatron called the BDI-2000. Hardware debug probes are often called JTAG probes, because
they use a low-level communications method first employed for boundary scan testing of
integrated circuits defined by the Joint Test Action Group (JTAG).

In the second part of this Shortcut, we continue our coverage of GDB for debugging application
code in user space. We extend our coverage of remote debugging and the tools and techniques
used for this peculiar debugging environment.

This Shortcut includes Chapters 14 and 15 from the book Embedded Linux Primer by Christopher
Hallinan (0-13-167984-8). As such, it contains references to earlier and later chapters that are not
included in this Shortcut. Apart from these references, the Shortcut is fully self-contained and is
an excellent choice for embedded Linux developers interested in learning both kernel-level and
application-level debugging techniques.

3 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 3 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.1

Challenges to Kernel Debugging

CHAPTER 14

Kernel Debugging Techniques

Often the pivotal factor in achieving development timetables comes down to one’s efficiency in
finding and fixing bugs. Debugging inside the Linux kernel can be quite challenging. No matter
how you approach it, kernel debugging will always be complex. This chapter examines some of the
complexities and presents ideas and methods to improve your debugging skills inside the kernel
and device drivers.

14.1 Challenges to Kernel Debugging
Debugging a modern operating system involves many challenges. Virtual memory operating
systems present their own unique challenges. Gone are the days when we could replace a proces-
sor with an in-circuit emulator. Processors have become far too fast and complex. Moreover,
pipeline architectures hide important code-execution details, partly because memory accesses on
the bus can be ordered differently from code execution, and particularly because of internal
caching of instruction streams. It is not always possible to correlate external bus activity to inter-
nal processor instruction execution, except at a rather coarse level.

4 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 4 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.1

Challenges to Kernel Debugging

Some of the challenges you will encounter while debugging Linux kernel code are:

. Linux kernel code is highly optimized for speed of execution in many areas.

. Compilers use optimization techniques that complicate the correlation of C source to actual
machine instruction flow. Inline functions are a good example of this.

. Single-stepping through compiler optimized code often produces unusual and unexpected
results.

. Virtual memory isolates user space memory from kernel memory and can make various
debugging scenarios especially difficult.

. Some code cannot be stepped through with traditional debuggers.

. Startup code can be especially difficult because of its proximity to the hardware and the
limited resources available (for example, no console, limited memory mapping, and so on).

The Linux kernel has matured into a very high-performance operating system capable of compet-
ing with the best commercial operating systems. Many areas within the kernel do not lend them-
selves to easy analysis by simply reading the source code. Knowledge of the architecture and
detailed design are often necessary to understand the code flow in a particular area. Several good
books are available that describe the kernel design in detail. Refer to Section 14.6.1, “Suggestions
for Additional Reading,” for recommendations.

GCC is an optimizing compiler. By default, the Linux kernel is compiled with the -O2 compiler
flag. This enables many optimization algorithms that can change the fundamental structure and
order of your code.1 For example, the Linux kernel makes heavy use of inline functions. Inline

5 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

1 See the GCC manual
referenced at the end of
this chapter in Section
14.6.1, “Suggestions
for Additional Reading”
for details on the
optimization levels.

Debugging Embedded Linux Page 5 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.2

Using KGDB for Kernel Debugging

functions are small functions declared with the inline keyword, which results in the function
being included directly in the execution thread instead of generating a function call and the asso-
ciated overhead.2 Inline functions require a minimum of -O1 optimization level. Therefore, you
cannot turn off optimization, which would be desirable for easier debugging.

In many areas within the Linux kernel, single-stepping through code is difficult or impossible. The
most obvious examples are code paths that modify the virtual memory settings. When your appli-
cation makes a system call that results in entry into the kernel, this results in a change in address
space as seen by the process. In fact, any transition that involves a processor exception changes
the operational context and can be difficult or impossible to single-step through.

14.2 Using KGDB for Kernel Debugging
Two popular methods enable symbolic source-level debugging within the Linux kernel:

. Using KGDB as a remote gdb agent

. Using a hardware JTAG probe to control the processor

We cover JTAG debugging in Section 14.4, “Hardware-Assisted Debugging.”

KGDB (Kernel GDB) is a set of Linux kernel patches that provide an interface to gdb via its remote
serial protocol. KGDB implements a gdb stub that communicates to a cross-gdb running on your
host development workstation. Until very recently, KGDB on the target required a serial connec-
tion to the development host. Some targets support KGDB connection via Ethernet, although this
is relatively new. Complete support for KGDB is still not in the mainline kernel.org kernel. You
need to port KGDB to your chosen target or obtain an embedded Linux distribution for your

6 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

2 Inline functions are
like macros, but with
the advantage of
compile-time type
checking.

Debugging Embedded Linux Page 6 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.2

Using KGDB for Kernel Debugging

chosen architecture and platform that contains KGDB support. Most embedded Linux distributions
available today support KGDB.

Figure 14-1 describes the KGDB debug setup. Up to three connections to the target board are used.
Ethernet is used to enable NFS root mount and telnet sessions from the host. If your board has a
ramdisk image in Flash that it mounts as a root file system, you can eliminate the Ethernet
connection.

A serial port is dedicated for the connection between KGBD and gdb running on the development
host system, and an optional second serial port serves as a console. Systems that have only one
serial port make KGDB somewhat more cumbersome to use.

As you can see in Figure 14-1, the debugger (your cross-version of gdb) runs on your development
host system. KGDB is part of the kernel running on your target system. KGDB implements the
hooks required to interface gdb with your target board to enable features such as setting break-
points, examining memory, and enabling single-step program execution.

7 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 14-1
KGDB debug setup

Debugging Embedded Linux Page 7 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.2

Using KGDB for Kernel Debugging

14.2.1 KGDB Kernel Configuration
KGDB is a kernel feature and must be enabled in your kernel. KGDB is selected from the Kernel
Hacking menu, as shown in Figure 14-2. As part of the configuration, you must select the serial
port for KGDB to use. Notice also from Figure 14-2 that we enabled the option to compile the
kernel with debug information. This adds the -g compiler flag to the build process to enable
symbolic debugging.

8 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 14-2
Kernel
configuration
for KGDB

Debugging Embedded Linux Page 8 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.2

Using KGDB for Kernel Debugging

14.2.2 Target Boot with KGDB
Support
After your kernel is built with KGDB support, it
must be enabled. Unfortunately, the method to
enable it is not yet uniform across all architec-
tures and implementations. In general, KGDB is
enabled by passing a command-line switch to
the kernel via the kernel command line. If
KGDB support is compiled into the kernel but
not enabled via a command-line switch, it does
nothing. When KGDB is enabled, the kernel
stops at a KGDB-enabled breakpoint very early
in the boot cycle to allow you to connect to the
target using gdb. Figure 14-3 shows the logic for
generating an initial breakpoint when KGDB is
enabled.

KGDB requires a serial port for connection to
the host.3 The first step in setting up KGDB is
to enable a serial port very early in the boot
process. In many architectures, the hardware
UART must be mapped into kernel memory
before access. After the address range is

9 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 14-3
KGDB logic

3 Notwithstanding the
comments made earlier
about KGDB over
Ethernet.

Debugging Embedded Linux Page 9 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.2

Using KGDB for Kernel Debugging

mapped, the serial port is initialized. Debug trap handlers are installed to allow processor excep-
tions to trap into the debugger.

Listing 14-1 displays the terminal output when booting with KGDB enabled. This example is based
on the AMCC 440EP Evaluation Kit (Yosemite board), which ships with the U-Boot bootloader.

LISTING 14-1 Booting with KGDB Enabled Using U-Boot

=> sete bootargs console=ttyS1,115200 root=/dev/nfs rw ip=dhcp gdb

=> bootm 200000

Booting image at 00200000 ...

Image Name: Linux-2.6.13

Image Type: PowerPC Linux Kernel Image (gzip compressed)

Data Size: 1064790 Bytes = 1 MB

Load Address: 00000000

Entry Point: 00000000

Verifying Checksum ... OK

Uncompressing Kernel Image ... OK

$T0440:c000ae5c;01:c0205fa0;#d9 <<< See text

Most of the boot sequence is familiar from our coverage of U-Boot in Chapter 7, “Bootloaders.”
This kernel boot sequence has two unique features: the command-line parameter to enable KGDB
and the odd-looking text string after the kernel is uncompressed.

Recall from Chapter 7 that the kernel command line is defined by the U-Boot bootargs environ-
ment variable. Notice that we have added the gdb parameter, which instructs the kernel to force an
early breakpoint and wait for the host debugger (your cross-gdb) to connect.

10 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 10 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.2

Using KGDB for Kernel Debugging

As diagrammed in Figure 14-3, the kernel detects the presence of the gdb parameter and attempts
to pass control to the remote (host-based) debugger. This is evidenced by the sequence of ASCII
characters dumped to the serial port in Listing 14-1. If you are curious about this gdb remote serial
protocol, it is documented in the gdb manual cited at the end of this chapter. In this example, KGDB
is sending a Stop Reply packet reporting the breakpoint trap to the remote gdb session on the host.
The two 32-bit parameters indicate the location of the program and the stack frame.

Now that the kernel is set up and waiting for the host debugger, we can begin our debugging
session. We invoke cross-gdb from our host development workstation and connect to the target
via gdb’s remote protocol. In this example, we are sharing the serial port, so we must disconnect
the terminal emulator from the target before trying to connect with gdb. Listing 14-2 highlights
the gdb connection process. This assumes that we have already exited our terminal emulator and
freed the serial port for gdb to use.

LISTING 14-2 Connecting to KGDB

$ ppc_4xx-gdb --silent vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

breakinst () at arch/ppc/kernel/ppc-stub.c:825

825 }

(gdb) l

820 return;

821 }

822

823 asm(" .globl breakinst \n\

11 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 11 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.2

Using KGDB for Kernel Debugging

824 breakinst: .long 0x7d821008");

825 }

826

827 #ifdef CONFIG_KGDB_CONSOLE

828 /* Output string in GDB O-packet format if GDB has connected.
If nothing

829 output, returns 0 (caller must then handle output). */

(gdb)

Here we have performed three actions:

. Invoked gdb, passing it the kernel ELF file vmlinux

. Connected to the target using the target remote command within gdb

. Issued the list command, using its abbreviated form to display our location in the
source code

At the risk of pointing out the obvious, the vmlinux image that we pass to gdb must be from the
same kernel build that produced the target kernel binary. It also must have been compiled with
the -g compiler flag to contain debug information.

When we issued the target remote command, gdb responded by displaying the location of the
program counter (PC). In this example, the kernel is stopped at the breakpoint defined by the
inline assembler statement at line 823 in file .../arch/ppc/kernel/ppc-stub.c. When we issue the
continue (c) command, execution resumes starting at line 825, as indicated.

12 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 12 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.2

Using KGDB for Kernel Debugging

14.2.3 Useful Kernel Breakpoints
We have now established a debug connection with the kernel on our target board. When we issue
the gdb continue (c) command, the kernel proceeds to boot, and if there are no problems, the boot
process completes. There is one minor limitation of using KGDB on many architectures and
processors. An engineering trade-off was made between the need to support very early kernel
debugging (for example, before a full-blown interrupt-driven serial port driver is installed) and the
desire to keep the complexity of the KGDB debug engine itself very simple and, therefore, robust
and portable. KGDB uses a simple polled serial driver that has zero overhead when the kernel is
running. As a drawback to this implementation, the traditional Ctl-C or Break sequence on the
serial port will have no effect. Therefore, it will be impossible to stop execution of the running
kernel unless a breakpoint or other fault is encountered.

For this reason, it has become common practice to define some system-wide breakpoints, which
provide the capability to halt the current thread of execution. Two of the most common are high-
lighted in Listing 14-3.

LISTING 14-3 Common Kernel Breakpoints

(gdb) b panic

Breakpoint 1 at 0xc0016b18: file kernel/panic.c, line 74.

(gdb) b sys_sync

Breakpoint 2 at 0xc005a8c8: file fs/buffer.c, line 296.

(gdb)

Using the gdb breakpoint command, again using its abbreviated version, we enter two breakpoints.
One is at panic() and the other is at the sync system call entry sys_sync(). The former allows the

13 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 13 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

debugger to be invoked if a later event generates a panic. This enables examination of the system
state at the time of the panic. The second is a useful way to halt the kernel and trap into the
debugger from user space by entering the sync command from a terminal running on your target
hardware.

We are now ready to proceed with our debugging session. We have a KGDB-enabled kernel
running on our target, paused at a KGDB-defined early breakpoint. We established a connection to
the target with our host-based cross debugger—in this case, invoked as ppc_4xx-gdb—and we have
entered a pair of useful system breakpoints. Now we can direct our debugging activities to the task
at hand.

One caveat: By definition, we cannot use KGDB for stepping through code before the breakpoint()

function in .../arch/ppc/setup.c used to establish the connection between a KGDB-enabled
kernel and cross-gdb on our host. Figure 14-3 is a rough guide to the code that executes before
KGDB gains control. Debugging this early code requires the use of a hardware-assisted debug
probe. We cover this topic shortly in Section 14.4, “Hardware-Assisted Debugging.”

14.3 Debugging the Linux Kernel
One of the more common reasons you might find yourself stepping through kernel code is to
modify or customize the platform-specific code for your custom board. Let’s see how this might be
done using the AMCC Yosemite board. We place a breakpoint at the platform-specific architecture
setup function and then continue until that breakpoint is encountered. Listing 14-4 shows the
sequence.

14 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 14 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

LISTING 14-4 Debugging Architecture-Setup Code

(gdb) b yosemite_setup_arch

Breakpoint 3 at 0xc021a488:

file arch/ppc/platforms/4xx/yosemite.c, line 308.

(gdb) c

Continuing.

Can’t send signals to this remote system. SIGILL not sent.

Breakpoint 3, yosemite_setup_arch () at arch/ppc/platforms/4xx/yosemite.c:308

308 yosemite_set_emacdata();

(gdb) l

303 }

304

305 static void __init

306 yosemite_setup_arch(void)

307 {

308 yosemite_set_emacdata();

309

310 ibm440gx_get_clocks(&clocks, YOSEMITE_SYSCLK, 6 * 1843200);

311 ocp_sys_info.opb_bus_freq = clocks.opb;

312

(gdb)

When the breakpoint at yosemite_setup_arch() is encountered, control passes to gdb at line 308 of
yosemite.c. The list (l) command displays the source listing centered on the breakpoint at line
308. The warning message displayed by gdb after the continue (c) command can be safely ignored.

15 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 15 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

It is part of gdb’s way of testing the capabilities of the remote system. It first sends a remote
continue_with_signal command to the target. The KGDB implementation for this target board
does not support this command; therefore, it is NAK’d by the target. gdb responds by displaying this
informational message and issuing the standard remote continue command instead.

14.3.1 gdb Remote Serial Protocol
gdb includes a debug switch that enables us to observe the remote protocol being used between gdb
on your development host and the target. This can be very useful for understanding the underly-
ing protocol, as well as troubleshooting targets that exhibit unusual or errant behavior. To enable
this debug mode, issue the following command:

(gdb) set debug remote 1

With remote debugging enabled, it is instructive to observe the continue command in action and
the steps taken by gdb. Listing 14-5 illustrates the use of the continue command with remote
debugging enabled.

LISTING 14-5 continue Remote Protocol Example

(gdb) c
Continuing.
Sending packet: $mc0000000,4#80...Ack
Packet received: c022d200
Sending packet: $Mc0000000,4:7d821008#68...Ack
Packet received: OK
Sending packet: $mc0016de8,4#f8...Ack
Packet received: 38600001

16 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 16 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Sending packet: $Mc0016de8,4:7d821008#e0...Ack
Packet received: OK
Sending packet: $mc005bd5c,4#23...Ack
Packet received: 38600001
Sending packet: $Mc005bd5c,4:7d821008#0b...Ack
Packet received: OK
Sending packet: $mc021a488,4#c8...Ack
Packet received: 4bfffbad
Sending packet: $Mc021a488,4:7d821008#b0...Ack
Packet received: OK
Sending packet: $c#63...Ack

<<< program running, gdb waiting for event

Although it might look daunting at first, what is happening here is easily understood. In summary,
gdb is restoring all its breakpoints on the target. Recall from Listing 14-3 that we entered two
breakpoints, one at panic() and one at sys_sync(). Later in Listing 14-4, we added a third
breakpoint at yosemite_setup_arch(). Thus, there are three active user-specified breakpoints. These
can be displayed by issuing the gdb info breakpoints command. As usual, we use the abbreviated
version.

(gdb) i b
Num Type Disp Enb Address What
1 breakpoint keep y 0xc0016de8 in panic at kernel/panic.c:74
2 breakpoint keep y 0xc005bd5c in sys_sync at fs/buffer.c:296
3 breakpoint keep y 0xc021a488 in yosemite_setup_arch at
arch/ppc/platforms/4xx/yosemite.c:308

breakpoint already hit 1 time
(gdb)

17 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 17 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Now compare the previous breakpoint addresses with the addresses in the gdb remote $m packet in
Listing 14-5. The $m packet is a “read target memory” command, and the $M packet is a “write
target memory” command. Once for each breakpoint, the address of the breakpoint is read from
target memory, stored away locally on the host by gdb (so it can be restored later), and replaced
with the PowerPC trap instruction twge r2, r2 (0x7d821008), which results in control passing back
to the debugger. Figure 14-4 illustrates this action.

18 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 14-4
gdb inserting
target memory
breakpoints

Debugging Embedded Linux Page 18 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

You might have noticed that gdb is updating four breakpoints, whereas we entered only three.
The first one at target memory location 0xc000_0000 is put there by gdb automatically upon
startup. This location is the base address of the linked kernel image from the ELF file—essentially,
_start. It is equivalent to a breakpoint at main() for user space debugging and is done by gdb auto-
matically. The other three breakpoints are the ones we entered earlier.

The same thing happens in reverse when an event occurs that returns control to gdb. Listing 14-6
details the action when our breakpoint at yosemite_setup_arch() is encountered.

LISTING 14-6 Remote Protocol: Breakpoint Hit

Packet received: T0440:c021a488;01:c020ff90;

Sending packet: $mc0000000,4#80...Ack <<< Read memory @c0000000

Packet received: 7d821008

Sending packet: $Mc0000000,4:c022d200#87...Ack <<< Write memory

Packet received: OK

Sending packet: $mc0016de8,4#f8...Ack

Packet received: 7d821008

Sending packet: $Mc0016de8,4:38600001#a4...Ack

Packet received: OK

Sending packet: $mc005bd5c,4#23...Ack

Packet received: 7d821008

Sending packet: $Mc005bd5c,4:38600001#cf...Ack

Packet received: OK

Sending packet: $mc021a488,4#c8...Ack

Packet received: 7d821008

Sending packet: $Mc021a488,4:4bfffbad#d1...Ack

19 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 19 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Packet received: OK

Sending packet: $mc021a484,c#f3...Ack

Packet received: 900100244bfffbad3fa0c022

Breakpoint 3, yosemite_setup_arch () at arch/ppc/platforms/4xx/yosemite.c:308

308 yosemite_set_emacdata();

(gdb)

The $T packet is a gdb Stop Reply packet. It is sent by the target to gdb when a breakpoint is
encountered. In our example, the $T packet returned the value of the program counter and register
r1.4 The rest of the activity is the reverse of that in Listing 14-5. The PowerPC trap breakpoint
instructions are removed, and gdb restores the original instructions to their respective memory
locations.

14.3.2 Debugging Optimized Kernel Code
At the start of this chapter, we said that one of the challenges identified in debugging kernel code
results from compiler optimization. We noted that the Linux kernel is compiled by default with
optimization level -O2. In the examples up to this point, we used -O1 optimization to simplify the
debugging task. Here we illustrate one of the many ways optimization can complicate debugging.

The related Internet mail lists are strewn with questions related to what appear to be broken tools.
Sometimes the poster reports that his debugger is single-stepping backward or that his line
numbers do not line up with his source code. Here we present an example to illustrate the
complexities that optimizing compilers bring to source-level debugging. In this example, the line

20 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

4 As pointed out earlier,
the gdb remote protocol
is detailed in the gdb
manual cited at the end
of this chapter in
Section 14.6.1,
“Suggestions for
Additional Reading.”

Debugging Embedded Linux Page 20 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

numbers that gdb reports when a breakpoint is hit do not match up with the line numbers in our
source file due to function inlining.

For this demonstration, we use the same debug code snippet as shown in Listing 14-4. However,
for this example, we have compiled the kernel with the compiler optimization flag -O2. This is the
default for the Linux kernel. Listing 14-7 shows the results of this debugging session.

LISTING 14-7 Optimized Architecture-Setup Code

$ ppc_44x-gdb --silent vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

breakinst () at arch/ppc/kernel/ppc-stub.c:825

825 }

(gdb) b panic

Breakpoint 1 at 0xc0016b18: file kernel/panic.c, line 74.

(gdb) b sys_sync

Breakpoint 2 at 0xc005a8c8: file fs/buffer.c, line 296.

(gdb) b yosemite_setup_arch

Breakpoint 3 at 0xc020f438: file arch/ppc/platforms/4xx/yosemite.c, line 116.

(gdb) c

Continuing.

Breakpoint 3, yosemite_setup_arch ()

at arch/ppc/platforms/4xx/yosemite.c:116

116 def = ocp_get_one_device(OCP_VENDOR_IBM, OCP_FUNC_EMAC, 0);

(gdb) l

21 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 21 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

111 struct ocp_def *def;

112 struct ocp_func_emac_data *emacdata;

113

114 /* Set mac_addr and phy mode for each EMAC */

115

116 def = ocp_get_one_device(OCP_VENDOR_IBM, OCP_FUNC_EMAC, 0);

117 emacdata = def->additions;

118 memcpy(emacdata->mac_addr, __res.bi_enetaddr, 6);

119 emacdata->phy_mode = PHY_MODE_RMII;

120

(gdb) p yosemite_setup_arch

$1 = {void (void)} 0xc020f41c <yosemite_setup_arch>

Referring back to Listing 14-4, notice that the function yosemite_setup_arch() actually falls on line
306 of the file yosemite.c. Compare that with Listing 14-7. We hit the breakpoint, but gdb reports
the breakpoint at file yosemite.c line 116. It appears at first glance to be a mismatch of line
numbers between the debugger and the corresponding source code. Is this a gdb bug? First let’s
confirm what the compiler produced for debug information. Using the readelf5 tool described in
Chapter 13, “Development Tools,” we can examine the debug information for this function
produced by the compiler.

$ ppc_44x-readelf --debug-dump=info vmlinux | grep -u6 \

yosemite_setup_arch | tail -n 7

DW_AT_name : (indirect string, offset: 0x9c04): yosemite_setup_arch

DW_AT_decl_file : 1

DW_AT_decl_line : 307

22 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

5 Remember to use your
cross-version of
readelf—for example,
ppc_44x-readelf for
the PowerPC 44x
architecture.

Debugging Embedded Linux Page 22 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

DW_AT_prototyped : 1

DW_AT_low_pc : 0xc020f41c

DW_AT_high_pc : 0xc020f794

DW_AT_frame_base : 1 byte block: 51 (DW_OP_reg1)

We don’t have to be experts at reading DWARF2 debug records6 to recognize that the function in
question is reported at line 307 in our source file. We can confirm this using the addr2line utility,
also introduced in Chapter 13. Using the address derived from gdb in Listing 14-7:

$ ppc_44x-addr2line -e vmlinux 0xc020f41c

arch/ppc/platforms/4xx/yosemite.c:307

At this point, gdb is reporting our breakpoint at line 116 of the yosemite.c file. To understand what
is happening, we need to look at the assembler output of the function as reported by gdb. Listing
14-8 is the output from gdb after issuing the disassemble command on the yosemite_setup_arch()
function.

LISTING 14-8 Disassemble Function yosemite_setup_arch

(gdb) disassemble yosemite_setup_arch

0xc020f41c <yosemite_setup_arch+0>: mflr r0

0xc020f420 <yosemite_setup_arch+4>: stwu r1,-48(r1)

0xc020f424 <yosemite_setup_arch+8>: li r4,512

0xc020f428 <yosemite_setup_arch+12>: li r5,0

0xc020f42c <yosemite_setup_arch+16>: li r3,4116

0xc020f430 <yosemite_setup_arch+20>: stmw r25,20(r1)

0xc020f434 <yosemite_setup_arch+24>: stw r0,52(r1)

0xc020f438 <yosemite_setup_arch+28>: bl 0xc000d344

23 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

6 A reference for the
Dwarf debug specifica-
tion appears at the end
of this chapter in
Section 14.6.1,
“Suggestions for
Additional Reading.”

Debugging Embedded Linux Page 23 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

<ocp_get_one_device>

0xc020f43c <yosemite_setup_arch+32>: lwz r31,32(r3)

0xc020f440 <yosemite_setup_arch+36>: lis r4,-16350

0xc020f444 <yosemite_setup_arch+40>: li r28,2

0xc020f448 <yosemite_setup_arch+44>: addi r4,r4,21460

0xc020f44c <yosemite_setup_arch+48>: li r5,6

0xc020f450 <yosemite_setup_arch+52>: lis r29,-16350

0xc020f454 <yosemite_setup_arch+56>: addi r3,r31,48

0xc020f458 <yosemite_setup_arch+60>: lis r25,-16350

0xc020f45c <yosemite_setup_arch+64>: bl 0xc000c708
<memcpy>

0xc020f460 <yosemite_setup_arch+68>: stw r28,44(r31)

0xc020f464 <yosemite_setup_arch+72>: li r4,512

0xc020f468 <yosemite_setup_arch+76>: li r5,1

0xc020f46c <yosemite_setup_arch+80>: li r3,4116

0xc020f470 <yosemite_setup_arch+84>: addi r26,r25,15104

0xc020f474 <yosemite_setup_arch+88>: bl 0xc000d344

<ocp_get_one_device>

0xc020f478 <yosemite_setup_arch+92>: lis r4,-16350

0xc020f47c <yosemite_setup_arch+96>: lwz r31,32(r3)

0xc020f480 <yosemite_setup_arch+100>: addi r4,r4,21534

0xc020f484 <yosemite_setup_arch+104>: li r5,6

0xc020f488 <yosemite_setup_arch+108>: addi r3,r31,48

0xc020f48c <yosemite_setup_arch+112>: bl 0xc000c708
<memcpy>

0xc020f490 <yosemite_setup_arch+116>: lis r4,1017

0xc020f494 <yosemite_setup_arch+120>: lis r5,168

24 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 24 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

0xc020f498 <yosemite_setup_arch+124>: stw r28,44(r31)

0xc020f49c <yosemite_setup_arch+128>: ori r4,r4,16554

0xc020f4a0 <yosemite_setup_arch+132>: ori r5,r5,49152

0xc020f4a4 <yosemite_setup_arch+136>: addi r3,r29,-15380

0xc020f4a8 <yosemite_setup_arch+140>: addi r29,r29,-15380

0xc020f4ac <yosemite_setup_arch+144>: bl 0xc020e338

<ibm440gx_get_clocks>

0xc020f4b0 <yosemite_setup_arch+148>: li r0,0

0xc020f4b4 <yosemite_setup_arch+152>: lis r11,-16352

0xc020f4b8 <yosemite_setup_arch+156>: ori r0,r0,50000

0xc020f4bc <yosemite_setup_arch+160>: lwz r10,12(r29)

0xc020f4c0 <yosemite_setup_arch+164>: lis r9,-16352

0xc020f4c4 <yosemite_setup_arch+168>: stw r0,8068(r11)

0xc020f4c8 <yosemite_setup_arch+172>: lwz r0,84(r26)

0xc020f4cc <yosemite_setup_arch+176>: stw r10,8136(r9)

0xc020f4d0 <yosemite_setup_arch+180>: mtctr r0

0xc020f4d4 <yosemite_setup_arch+184>: bctrl

0xc020f4d8 <yosemite_setup_arch+188>: li r5,64

0xc020f4dc <yosemite_setup_arch+192>: mr r31,r3

0xc020f4e0 <yosemite_setup_arch+196>: lis r4,-4288

0xc020f4e4 <yosemite_setup_arch+200>: li r3,0

0xc020f4e8 <yosemite_setup_arch+204>: bl 0xc000c0f8
<ioremap64>

End of assembler dump.

(gdb)

25 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 25 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Once again, we need not be PowerPC assembly language experts to understand what is happening
here. Notice the labels associated with the PowerPC bl instruction. This is a function call in
PowerPC mnemonics. The symbolic function labels are the important data points. After a cursory
analysis, we see several function calls near the start of this assembler listing:

Address Function
0xc020f438 ocp_get_one_device()
0xc020f45c memcpy()
0xc020f474 ocp_get_one_device()
0xc020f48c memcpy()
0xc020f4ac ibm440gx_get_clocks()

Listing 14-9 reproduces portions of the source file yosemite.c. Correlating the functions we found
in the gdb disassemble output, we see those labels occurring in the function yosemite_set_

emacdata(), around the line numbers reported by gdb when the breakpoint at yosemite_setup_

arch() was encountered. The key to understanding the anomaly is to notice the subroutine call
at the very start of yosemite_setup_arch(). The compiler has inlined the call to yosemite_set_

emacdata()instead of generating a function call, as would be expected by simple inspection of the
source code. This inlining produced the mismatch in the line numbers when gdb hit the break-
point. Even though the yosemite_set_emacdata() function was not declared using the inline
keyword, GCC inlined the function as a performance optimization.

26 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 26 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

LISTING 14-9 Portions of Source File yosemite.c

109 static void __init yosemite_set_emacdata(void)

110 {

111 struct ocp_def *def;

112 struct ocp_func_emac_data *emacdata;

113

114 /* Set mac_addr and phy mode for each EMAC */

115

116 def = ocp_get_one_device(OCP_VENDOR_IBM, OCP_FUNC_EMAC, 0);

117 emacdata = def->additions;

118 memcpy(emacdata->mac_addr, __res.bi_enetaddr, 6);

119 emacdata->phy_mode = PHY_MODE_RMII;

120

121 def = ocp_get_one_device(OCP_VENDOR_IBM, OCP_FUNC_EMAC, 1);

122 emacdata = def->additions;

123 memcpy(emacdata->mac_addr, __res.bi_enet1addr, 6);

124 emacdata->phy_mode = PHY_MODE_RMII;

125 }

126

...

304

305 static void __init

306 yosemite_setup_arch(void)

307 {

308 yosemite_set_emacdata();

309

27 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 27 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

310 ibm440gx_get_clocks(&clocks, YOSEMITE_SYSCLK, 6 * 1843200);

311 ocp_sys_info.opb_bus_freq = clocks.opb;

312

313 /* init to some ~sane value until calibrate_delay() runs */

314 loops_per_jiffy = 50000000/HZ;

315

316 /* Setup PCI host bridge */

317 yosemite_setup_hose();

318

319 #ifdef CONFIG_BLK_DEV_INITRD

320 if (initrd_start)

321 ROOT_DEV = Root_RAM0;

322 else

323 #endif

324 #ifdef CONFIG_ROOT_NFS

325 ROOT_DEV = Root_NFS;

326 #else

327 ROOT_DEV = Root_HDA1;

328 #endif

329

330 yosemite_early_serial_map();

331

332 /* Identify the system */

333 printk("AMCC PowerPC " BOARDNAME " Platform\n");

334 }

335

28 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 28 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

To summarize the previous discussion:

. We entered a breakpoint in gdb at yosemite_setup_arch().

. When the breakpoint was hit, we found ourselves at line 116 of the source file, which was far
removed from the function where we defined the breakpoint.

. We produced a disassembly listing of the code at yosemite_setup_arch() and discovered the
labels to which this sequence of code was branching.

. Comparing the labels back to our source code, we discovered that the compiler had placed the
yosemite_set_emacdata() subroutine inline with the function where we entered a breakpoint,
causing potential confusion.

This explains the line numbers reported by gdb when the original breakpoint in
yosemite_setup_arch() was hit.

Compilers employ many different kinds of optimization algorithms. This example presented but
one: function inlining. Each can confuse a debugger (the human and the machine) in a different
way. The challenge is to understand what is happening at the machine level and translate that
into what we as developers had intended. You can see now the benefits of using the minimum
possible optimization level for debugging.

14.3.3 gdb User-Defined Commands
You might already realize that gdb looks for an initialization file on startup, called .gdbinit. When
first invoked, gdb loads this initialization file (usually found in the user’s home directory) and acts
on the commands within it. One of my favorite combinations is to connect to the target system
and set initial breakpoints. In this case, the contents of .gdbinit would look like Listing 14-10.

29 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 29 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

LISTING 14-10 Simple gdb Initialization File

$ cat ~/.gdbinit

set history save on

set history filename ~/.gdb_history

set output-radix 16

define connect

target remote bdi:2001

target remote /dev/ttyS0

b panic

b sys_sync

end

This simple .gdbinit file enables the storing of command history in a user-specified file and sets
the default output radix for printing of values. Then it defines a gdb user-defined command called
connect. (User-defined commands are also often called macros.) When issued at the gdb command
prompt, gdb connects to the target system via the desired method and sets the system breakpoints
at panic() and sys_sync(). One method is commented out; we discuss this method shortly in
Section 14.4.

There is no end to the creative use of gdb user-defined commands. When debugging in the kernel,
it is often useful to examine global data structures such as task lists and memory maps. Here we
present several useful gdb user-defined commands capable of displaying specific kernel data that
you might need to access during your kernel debugging.

30 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 30 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

14.3.4 Useful Kernel gdb Macros
During kernel debugging, it is often useful to view the processes that are running on the system, as
well as some common attributes of those processes. The kernel maintains a linked list of tasks
described by struct task_struct. The address of the first task in the list is contained in the kernel
global variable init_task, which represents the initial task spawned by the kernel during startup.
Each task contains a struct list_head, which links the tasks in a circular linked list. These two
ubiquitous kernel structures are described in the following header files:

struct task_struct .../include/linux/sched.h

struct list_head .../include/linux/list.h

Using gdb macros, we can traverse the task list and display useful information about the tasks. It is
easy to modify the macros to extract the data you might be interested in. It is also a very useful
tool for learning the details of kernel internals.

The first macro we examine is a simple one that searches the kernel’s linked list of task_struct
structures until it finds the given task. If it is found, it displays the name of the task.

LISTING 14-11 gdb find_task Macro

1 # Helper function to find a task given a PID or the

2 # address of a task_struct.

3 # The result is set into $t

4 define find_task

5 # Addresses greater than _end: kernel data...

6 # ...user passed in an address

7 if ((unsigned)$arg0 > (unsigned)&_end)

31 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 31 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

8 set $t=(struct task_struct *)$arg0

9 else

10 # User entered a numeric PID

11 # Walk the task list to find it

12 set $t=&init_task

13 if (init_task.pid != (unsigned)$arg0)

14 find_next_task $t

15 while (&init_task!=$t && $t->pid != (unsigned)$arg0)

16 find_next_task $t

17 end

18 if ($t == &init_task)

19 printf "Couldn’t find task; using init_task\n"

20 end

21 end

22 end

23 printf "Task \"%s\":\n", $t->comm

24 end

Place this text into your .gdbinit file and restart gdb, or source7 it using gdb’s source command.
(We explain the find_next_task macro later in Listing 14-15.) Invoke it as follows:

(gdb) find_task 910

Task "syslogd":

or

(gdb) find_task 0xCFFDE470

Task "bash":

32 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

7 A helpful shortcut for
macro development is
the gdb source
command. This
command opens and
reads a source file
containing macro
definitions.

Debugging Embedded Linux Page 32 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Line 4 defines the macro name. Line 7 decides whether the input argument is a PID (numeric
entry starting at zero and limited to a few million) or a task_struct address that must be greater
than the end of the Linux kernel image itself, defined by the symbol _end.8 If it’s an address, the
only action required is to cast it to the proper type to enable dereferencing the associated
task_struct. This is done at line 8. As the comment in line 3 states, this macro returns a gdb
convenience variable typecasted to a pointer to a struct task_struct.

If the input argument is a numeric PID, the list is traversed to find the matching task_struct.
Lines 12 and 13 initialize the loop variables (gdb does not have a for statement in its macro
command language), and lines 15 through 17 define the search loop. The find_next_task macro is
used to extract the pointer to the next task_struct in the linked list. Finally, if the search fails, a
sane return value is set (the address of init_task) so that it can be safely used in other macros.

Building on the find_task macro in Listing 14-11, we can easily create a simple ps command that
displays useful information about each process running on the system.

Listing 14-12 defines a gdb macro that displays interesting information from a running process,
extracted from the struct task_struct for the given process. It is invoked like any other gdb
command, by typing its name followed by any required input parameters. Notice that this user-
defined command requires a single argument, either a PID or the address of a task_struct.

LISTING 14-12 gdb Macro: Print Process Information

1 define ps

2 # Print column headers

3 task_struct_header

4 set $t=&init_task

33 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

8 The symbol _end is
defined in the linker
script file during the
final link.

Debugging Embedded Linux Page 33 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

5 task_struct_show $t

6 find_next_task $t

7 # Walk the list

8 while &init_task!=$t

9 # Display useful info about each task

10 task_struct_show $t

11 find_next_task $t

12 end

13 end

14

15 document ps

16 Print points of interest for all tasks

17 end

This ps macro is similar to the find_task macro, except that it requires no input arguments and it
adds a macro (task_struct_show) to display the useful information from each task_struct. Line 3
prints a banner line with column headings. Lines 4 through 6 set up the loop and display the first
task. Lines 8 through 11 loop through each task, calling the task_struct_show macro for each.

Notice also the inclusion of the gdb document command. This allows the gdb user to get help by
issuing the help ps command from the gdb command prompt as follows:

(gdb) help ps

Print points of interest for all tasks

Listing 14-13 displays the output of this macro on a target board running only minimal services.

34 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 34 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

LISTING 14-13 gdb ps Macro Output

(gdb) ps
Address PID State User_NIP Kernel-SP device comm
0xC01D3750 0 Running 0xC0205E90 (none) swapper
0xC04ACB10 1 Sleeping 0x0FF6E85C 0xC04FFCE0 (none) init
0xC04AC770 2 Sleeping 0xC0501E90 (none) ksoftirqd/0
0xC04AC3D0 3 Sleeping 0xC0531E30 (none) events/0
0xC04AC030 4 Sleeping 0xC0533E30 (none) khelper
0xC04CDB30 5 Sleeping 0xC0535E30 (none) kthread
0xC04CD790 23 Sleeping 0xC06FBE30 (none) kblockd/0
0xC04CD3F0 45 Sleeping 0xC06FDE50 (none) pdflush
0xC04CD050 46 Sleeping 0xC06FFE50 (none) pdflush
0xC054B7B0 48 Sleeping 0xC0703E30 (none) aio/0
0xC054BB50 47 Sleeping 0xC0701E20 (none) kswapd0
0xC054B410 629 Sleeping 0xC0781E60 (none) kseriod
0xC054B070 663 Sleeping 0xCFC59E30 (none) rpciod/0
0xCFFDE0D0 675 Sleeping 0x0FF6E85C 0xCF86DCE0 (none) udevd
0xCF95B110 879 Sleeping 0x0FF0BE58 0xCF517D80 (none) portmap
0xCFC24090 910 Sleeping 0x0FF6E85C 0xCF61BCE0 (none) syslogd
0xCF804490 918 Sleeping 0x0FF66C7C 0xCF65DD70 (none) klogd
0xCFE350B0 948 Sleeping 0x0FF0E85C 0xCF67DCE0 (none) rpc.statd
0xCFFDE810 960 Sleeping 0x0FF6E85C 0xCF5C7CE0 (none) inetd
0xCFC24B70 964 Sleeping 0x0FEEBEAC 0xCF64FD80 (none) mvltd
0xCFE35B90 973 Sleeping 0x0FF66C7C 0xCFEF7CE0 ttyS1 getty
0xCFE357F0 974 Sleeping 0x0FF4B85C 0xCF6EBCE0 (none) in.telnetd
0xCFFDE470 979 Sleeping 0x0FEB6950 0xCF675DB0 ttyp0 bash
0xCFFDEBB0 982<Running 0x0FF6EB6C 0xCF7C3870 ttyp0 sync
(gdb)

35 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 35 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

The bulk of the work done by this ps macro is performed by the task_struct_show macro. As
shown in Listing 14-13, the task_struct_show macro displays the following fields from each
task_struct:

. Address—Address of the task_struct for the process

. PID—Process ID

. State—Current state of the process

. User_NIP—Userspace Next Instruction Pointer

. Kernel_SP—Kernel Stack Pointer

. device—Device associated with this process

. comm—Name of the process (or command)

It is relatively easy to modify the macro to show the items of interest for your particular kernel
debugging task. The only complexity is in the simplicity of the macro language. Because function
equivalents such as strlen do not exist in gdb’s user-defined command language, screen formatting
must be done by hand.

Listing 14-14 reproduces the task_struct_show macro that produced the previous listing.

LISTING 14-14 gdb task_struct_show Macro

1 define task_struct_show
2 # task_struct addr and PID
3 printf "0x%08X %5d", $arg0, $arg0->pid
4
5 # Place a '<' marker on the current task

36 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 36 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

6 # if ($arg0 == current)
7 # For PowerPC, register r2 points to the "current" task
8 if ($arg0 == $r2)
9 printf "<"
10 else
11 printf " "
12 end
13
14 # State
15 if ($arg0->state == 0)
16 printf "Running "
17 else
18 if ($arg0->state == 1)
19 printf "Sleeping "
20 else
21 if ($arg0->state == 2)
22 printf "Disksleep "
23 else
24 if ($arg0->state == 4)
25 printf "Zombie "
26 else
27 if ($arg0->state == 8)
28 printf "sTopped "
29 else
30 if ($arg0->state == 16)
31 printf "Wpaging "
32 else
33 printf "%2d ", $arg0->state

37 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 37 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

34 end
35 end
36 end
37 end
38 end
39 end
40
41 # User NIP
42 if ($arg0->thread.regs)
43 printf "0x%08X ", $arg0->thread.regs->nip
44 else
45 printf " "
46 end
47
48 # Display the kernel stack pointer
49 printf "0x%08X ", $arg0->thread.ksp
50
51 # device
52 if ($arg0->signal->tty)
53 printf "%s ", $arg0->signal->tty->name
54 else
55 printf "(none) "
56 end
57
58 # comm
59 printf "%s\n", $arg0->comm
60 end

38 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 38 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Line 3 displays the address of the task_struct. Lines 8 through 12 display the process ID. If this is
the current process (the process that was currently running on this CPU at the time the breakpoint
was hit), it is marked with a < character.

Lines 14 through 39 decode and display the state of the process. This is followed by displaying the
user process next instruction pointer (NIP) and the kernel stack pointer (SP). Finally, the device
associated with the process is displayed, followed by the name of the process (stored in the ->comm
element of the task_struct.)

It is important to note that this macro is architecture dependent, as shown in lines 7 and 8. In
general, macros such as these are highly architecture- and version-dependent. Any time a change
in the underlying structure is made, macros such as these must be updated. However, if you spend
a lot of time debugging the kernel using gdb, the payback is often worth the effort.

For completeness, we present the find_next_task macro. Its implementation is less than obvious
and deserves explanation. (It is assumed that you can easily deduce the task_struct_header that
completes the series necessary for the ps macro presented in this section. It is nothing more than a
single line arranging the column headers with the correct amount of whitespace.) Listing 14-15
presents the find_next_task macro used in our ps and find_task macros.

LISTING 14-15 gdb find_next_task Macro

define find_next_task
Given a task address, find the next task in the linked list
set $t = (struct task_struct *)$arg0
set $offset=((char *)&$t->tasks - (char *)$t)
set $t=(struct task_struct *)((char *)$t->tasks.next- (char *)$offset)

end

39 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 39 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

The function performed by this macro is simple. The implementation is slightly less than straight-
forward. The goal is to return the ->next pointer, which points to the next task_struct on the
linked list. However, the task_struct structures are linked by the address of the struct list_head
member called tasks, as opposed to the common practice of being linked by the starting address of
the task_struct itself. Because the ->next pointer points to the address of the task structure
element in the next task_struct on the list, we must subtract to get the address of the top of the
task_struct itself. The value we subtract from the ->next pointer is the offset from that pointer’s
address to the top of task_struct. First we calculate the offset and then we use that offset to adjust
the ->next pointer to point to the top of task_struct. Figure 14-5 should make this clear.

40 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 14-5
Task structure
list linking

Debugging Embedded Linux Page 40 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Now we present one final macro that will be useful in the next section when we discuss debugging
loadable modules. Listing 14-16 is a simple macro that displays the kernel’s list of currently
installed loadable modules.

LISTING 14-16 gdb List Modules Macro

1 define lsmod

2 printf "Address\t\tModule\n"

3 set $m=(struct list_head *)&modules

4 set $done=0

5 while (!$done)

6 # list_head is 4-bytes into struct module

7 set $mp=(struct module *)((char *)$m->next - (char *)4)

8 printf "0x%08X\t%s\n", $mp, $mp->name

9 if ($mp->list->next == &modules)

10 set $done=1

11 end

12 set $m=$m->next

13 end

14 end

15

16 document lsmod

17 List the loaded kernel modules and their start addresses

18 end

This simple loop starts with the kernel’s global variable module. This variable is a struct list_head

that marks the start of the linked list of loadable modules. The only complexity is the same as that

41 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 41 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

described in Listing 14-15. We must subtract an offset from the struct list_head pointer to point
to the top of the struct module. This is performed in line 7. This macro produces a simple listing of
modules containing the address of the struct module and the module’s name. Here is an example
of its use:

(gdb) lsmod
Address Module
0xD1012A80 ip_conntrack_tftp
0xD10105A0 ip_conntrack
0xD102F9A0 loop
(gdb) help lsmod
List the loaded kernel modules and their start addresses
(gdb)

Macros such as the ones presented here are very powerful debugging aids. You can create macros
in a similar fashion to display anything in the kernel that lends itself to easy access, especially the
major data structures maintained as linked lists. Examples include process memory map informa-
tion, module information, file system information, and timer lists and so on. The information
presented here should get you started.

14.3.5 Debugging Loadable Modules
The most common reason for using KGDB is to debug loadable kernel modules, that is, device
drivers. One of the more convenient features of loadable modules is that, under most circum-
stances, it is not necessary to reboot the kernel for each new debugging session. You can start a
debugging session, make some changes, recompile, and reload the module without the hassle and
delay of a complete kernel reboot.

42 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 42 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

The complication associated with debugging loadable modules is in gaining access to the symbolic
debug information contained in the module’s object file. Because loadable modules are dynami-
cally linked when they are loaded into the kernel, the symbolic information contained in the
object file is useless until the symbol table is adjusted.

Recall from our earlier examples how we invoke gdb for a kernel debugging session:

$ ppc_4xx-gdb vmlinux

This launches a gdb debugging session on your host, and reads the symbol information from the
Linux kernel ELF file vmlinux. Of course, you will not find symbols for any loadable modules in
this file. Loadable modules are separate compilation units and are linked as individual standalone
ELF objects. Therefore, if we intend to perform any source-level debugging on a loadable module,
we need to load its debug symbols from the ELF file. gdb provides this capability in its add-symbol-
file command.

The add-symbol-file command loads symbols from the specified object file, assuming that the
module itself has already been loaded. However, we are faced with the chicken-and-egg syndrome.
We don’t have any symbol information until the loadable module has been loaded into the kernel
and the add-symbol-file command is issued to read in the module’s symbol information. However,
after the module has been loaded, it is too late to set breakpoints and debug the module’s *_init
and related functions because they have already executed.

The solution to this dilemma is to place a breakpoint in the kernel code that is responsible for
loading the module, after it has been linked but before its initialization function has been called.
This work is done by .../kernel/module.c. Listing 14-17 reproduces the relevant portions of
module.c.

43 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 43 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

LISTING 14-17 module.c: Module Initialization

...

1901 down(¬ify_mutex);

1902 notifier_call_chain(&module_notify_list, MODULE_STATE_COMING, mod);

1903 up(¬ify_mutex);

1904

1905 /* Start the module */

1906 if (mod->init != NULL)

1907 ret = mod->init();

1908 if (ret < 0) {

1909 /* Init routine failed: abort. Try to protect us from

1910 buggy refcounters. */

1911 mod->state = MODULE_STATE_GOING;

...

We load the module using the modprobe utility, which was demonstrated in Listing 8-5 in Chapter
8, “Device Driver Basics,” and looks like this:

$ modprobe loop

This command issues a special system call that directs the kernel to load the module. The module
loading begins at sys_init_module() in module.c. After the module has been loaded into kernel
memory and dynamically linked, control is passed to the module’s _init function. This is shown
in lines 1906 and 1907 of Listing 14-17. We place our breakpoint here. This enables us to add the
symbol file to gdb and subsequently set breakpoints in the module. We demonstrate this process
using the Linux kernel’s loopback driver called loop.ko. This module has no dependencies on
other modules and is reasonably easy to demonstrate.

44 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 44 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Listing 14-18 shows the gdb commands to initiate this debugging session on loop.ko.

LISTING 14-18 Initiate Module Debug Session: loop.ko

1 $ ppc-linux-gdb --silent vmlinux

2 (gdb) connect

3 breakinst () at arch/ppc/kernel/ppc-stub.c:825

4 825 }

5 Breakpoint 1 at 0xc0016b18: file kernel/panic.c, line 74.

6 Breakpoint 2 at 0xc005a8c8: file fs/buffer.c, line 296.

7 (gdb) b module.c:1907

8 Breakpoint 3 at 0xc003430c: file kernel/module.c, line 1907.

9 (gdb) c

10 Continuing.

11 >>>> Here we let the kernel finish booting

12 and then load the loop.ko module on the target

13

14 Breakpoint 3, sys_init_module (umod=0x30029000, len=0x2473e,

15 uargs=0x10016338 "") at kernel/module.c:1907

16 1907 ret = mod->init();

17 (gdb) lsmod

18 Address Module

19 0xD102F9A0 loop

20 (gdb) set $m=(struct module *)0xD102F9A0.

21 (gdb) p $m->module_core

22 $1 = (void *) 0xd102c000

23 (gdb) add-symbol-file ./drivers/block/loop.ko 0xd102c000

45 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 45 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

24 add symbol table from file "./drivers/block/loop.ko" at

25 .text_addr = 0xd102c000

26 (y or n) y

27 Reading symbols from /home/chris/sandbox/linux-2.6.13-amcc/

drivers/block /loop.ko...done.

Starting with line 2, we use the gdb user-defined macro connect created earlier in Listing 14-10 to
connect to the target board and set our initial breakpoints. We then add the breakpoint in
module.c, as shown in line 7, and we issue the continue command (c). Now the kernel completes
the boot process and we establish a telnet session into the target and load the loop.ko module
(not shown). When the loopback module is loaded, we immediately hit breakpoint #3. gdb then
displays the information shown in lines 14 through 16.

At this point, we need to discover the address where the Linux kernel linked our module’s .text
section. Linux stores this address in the module information structure struct module in the
module_core element. Using the lsmod macro we defined in Listing 14-16, we obtain the address of
the struct module associated with our loop.ko module. This is shown in lines 17 through 19. Now
we use this structure address to obtain the module’s .text address from the module_core structure
member. We pass this address to the gdb add-symbol-file command, and gdb uses this address to
adjust its internal symbol table to match the actual addresses where the module was linked into
the kernel. From there, we can proceed in the usual manner to set breakpoints in the module, step
through code, examine data, and so on.

We conclude this section with a demonstration of placing a breakpoint in the loopback module’s
initialization function so that we can step through the module’s initialization code. The complica-
tion here is that the kernel loads the module’s initialization code into a separately allocated

46 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 46 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

portion of memory so that it can be freed after use. Recall from Chapter 5, “Kernel Initialization,”
our discussion of the __init macro. This macro expands into a compiler attribute that directs the
linker to place the marked portion of code into a specially named ELF section. In essence, any
function defined with this attribute is placed in a separate ELF section named .init.text. Its use is
similar to the following:

static int __init loop_init(void){...}

This invocation would place the compiled loop_init() function into the .init.text section of the
loop.ko object module. When the module is loaded, the kernel allocates a chunk of memory for
the main body of the module, which is pointed to by the struct module member named
module_core. It then allocates a separate chunk of memory to hold the .init.text section. After
the initialization function is called, the kernel frees the memory that contained the initialization
function. Because the object module is split like this, we need to inform gdb of this addressing
scheme to be able to use symbolic data for debugging the initialization function.9 Listing 14-19
demonstrates these steps.

LISTING 14-19 Debugging Module init Code

$ ppc_4xx-gdb –slient vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

breakinst () at arch/ppc/kernel/ppc-stub.c:825

825 }

<< Place a breakpoint before calling module init >>

(gdb) b module.c:1907

47 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

9 As of this writing, there
is a bug in gdb that
prevents this technique
from working properly.
Hopefully, by the time
you read this, it will
be fixed.

Debugging Embedded Linux Page 47 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

Breakpoint 1 at 0xc0036418: file kernel/module.c, line 1907.

(gdb) c

Continuing.

Breakpoint 1, sys_init_module (umod=0xd102ef40, len=0x23cb3, uargs=0x10016338 "") at kernel/
module.c:1907

1907 ret = mod->init();

<< Discover init addressing from struct module >>

(gdb) lsmod

Address Module

0xD102EF40 loop

(gdb) set $m=(struct module *)0xD102EF40

(gdb) p $m->module_core

$1 = (void *) 0xd102b000

(gdb) p $m->module_init

$2 = (void *) 0xd1031000

<< Now load a symbol file using the core and init addrs >>

(gdb) add-symbol-file ./drivers/block/loop.ko 0xd102b000 -s .init.text 0xd1031000

add symbol table from file "./drivers/block/loop.ko" at

.text_addr = 0xd102b000

.init.text_addr = 0xd1031000

(y or n) y

Reading symbols from /home/chris/sandbox/linux-2.6.13-amcc/drivers/block/loop.ko...done.

48 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 48 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

(gdb) b loop_init

Breakpoint 3 at 0xd1031000: file drivers/block/loop.c, line 1244.

(gdb) c

Continuing.

<< Breakpoint hit, proceed to debug module init function >>

Breakpoint 3, 0xd1031000 in loop_init () file drivers/block/loop.c, line 1244

1244 if (max_loop < 1 || max_loop > 256) {

(gdb)

14.3.6 printk Debugging
Debugging kernel and device driver code using printk is a popular technique, mostly because
printk has evolved into a very robust method. You can call printk from almost any context,
including from interrupt handlers. printk is the kernel’s version of the familiar printf() C library
function. printk is defined in .../kernel/printk.c.

It is important to understand the limitations of using printk for debugging. First, printk requires a
console device. Moreover, although the console device is configured as early as possible during
kernel initialization, there are many calls to printk before the console device has been initialized.
We present a method to cope with this limitation later, in Section 14.5, “When It Doesn’t Boot.”

The printk function allows the addition of a string marker that identifies the level of severity of a
given message. The header file .../include/linux/kernel.h defines eight levels:

#define KERN_EMERG "<0>" /* system is unusable */

#define KERN_ALERT "<1>" /* action must be taken immediately */

49 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 49 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

#define KERN_CRIT "<2>" /* critical conditions */

#define KERN_ERR "<3>" /* error conditions */

#define KERN_WARNING "<4>" /* warning conditions */

#define KERN_NOTICE "<5>" /* normal but significant condition */

#define KERN_INFO "<6>" /* informational */

#define KERN_DEBUG "<7>" /* debug-level messages */

A simple printk message might look like this:

printk("foo() entered w/ %s\n", arg);

If the severity string is omitted, the kernel assigns a default severity level, which is defined in
printk.c. In recent kernels, this is set at severity level 4, KERN_WARNING. Specifying printk with a
severity level might look something like this:

printk(KERN_CRIT "vmalloc failed in foo()\n");

By default, all printk messages below a predefined loglevel are displayed on the system console
device. The default loglevel is defined in printk.c. In recent Linux kernels, it has the value 7. This
means that any printk message that is greater in importance than KERN_DEBUG will be displayed on
the console.

You can set the default kernel loglevel in a variety of ways. At boot time, you can specify the
default loglevel on your target board by passing the appropriate kernel command-line parameters
to the kernel at boot time. Three kernel command line options defined in main.c affect the default
loglevel:

50 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 50 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

. debug—Sets the console loglevel to 10

. quiet—Sets the console loglevel to 4

. loglevel=—Sets the console loglevel to your choice of value

Using debug effectively displays every printk message. Using quiet displays all printk messages of
severity KERN_ERR or higher.

printk messages can be logged to files on your target or via the network. Use klogd (kernel log
daemon) and syslogd (system log daemon) to control the logging behavior of printk messages.
These popular utilities are described in man pages and many Linux references, and are not
described here.

14.3.7 Magic SysReq Key
This useful debugging aid is invoked through a series of special predefined key sequences that send
messages directly to the kernel. For many target architectures and boards, you use a simple termi-
nal emulator on a serial port as a system console. For these architectures, the Magic SysReq key is
defined as a break character followed by a command character. Consult the documentation on the
terminal emulator you use for how to send a break character. Many Linux developers use the
minicom terminal emulator. For minicom, the break character is sent by typing Ctl-A F. After sending
the break in this manner, you have 5 seconds to enter the command character before the
command times out.

51 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 51 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.3

Debugging the Linux Kernel

This useful kernel tool can be very helpful for development and debugging, but it can also cause
data loss and system corruption. Indeed, the b command immediately reboots your system without
any notification or preparation. Open files are not closed, disks are not synced, and file systems are
not unmounted. When the reboot (b) command is issued, control is immediately passed to the
reset vector of your architecture in a most abrupt and stunning manner. Use this powerful tool at
your own peril!

This feature is well documented in the Linux kernel documentation subdirectory in a file called
sysrq.txt. There you find the details for many architectures and the description of available
commands.

For example, another way to set the kernel loglevel just discussed is to use the Magic SysReq key.
The command is a number from 0 through 9, which results in the default loglevel being set to the
number of the command. From minicom, press Ctl-A F followed by a number, such as 9. Here is
how it looks on the terminal:

$ SysRq : Changing Loglevel

Loglevel set to 9

Commands can be used to dump registers, shut down your system, reboot your system, dump a
list of processes, dump current memory information to your console, and more. See the documen-
tation file in any recent Linux kernel for the details.

This feature is most commonly used when something causes your system to lock up. Often the
Magic SysReq key provides a way to learn something from an otherwise dead system.

52 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 52 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

14.4 Hardware-Assisted Debugging
By now you’ve probably realized that you cannot debug very early kernel-startup code with KGDB.
This is because KGDB is not initialized until after most of the low-level hardware-initialization
code has executed. Furthermore, if you are assigned the task of bringing up a brand-new board
design and porting a bootloader and the Linux kernel, having a hardware-debug probe is without a
doubt the most efficient means of debugging problems in these early stages of board porting.

You can choose from a wide variety of hardware-debug probes. For the examples in this section,
we use a unit manufactured by Abatron called the BDI-2000 (see www.abatron.ch). These units are
often called JTAG probes because they use a low-level communications method that was first
employed for boundary scan testing of integrated circuits defined by the Joint Test Action Group
(JTAG).

A JTAG probe contains a small connector designed for connection to your target board. It is often
a simple square-pin header and ribbon cable arrangement. Most modern high-performance CPUs
contain a JTAG interface that is designed to provide this software debugging capability. The JTAG
probe connects to this CPU JTAG interface. The other side of the JTAG probe connects to your host
development system usually via Ethernet, USB, or a parallel port. Figure 14-6 details the setup for
the Abatron unit.

JTAG probes can be complicated to set up. This is a direct result of the complexity of the CPU to
which it is connected. When power is applied to a target board and its CPU comes out of reset,
almost nothing is initialized. In fact, many processors need at least a small amount of initialization
before they can do anything. Many methods are available for getting this initial configuration into
the CPU. Some CPUs read a hardware-configuration word or initial values of specific pins to learn
their power-on configuration. Others rely on reading a default location in a simple nonvolatile

53 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 53 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

storage device such as Flash. When using a JTAG probe, especially for bringing up a new board
design, a minimum level of CPU and board initialization must be performed before anything else
can be done. Many JTAG probes rely on a configuration file for this initialization.

54 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 14-6
Hardware JTAG
probe debugging

The Abatron unit uses a configuration file to initialize the target hardware it is connected to, as
well as to define other operational parameters of the debugger. This configuration file contains
directives that initialize the CPU, memory system, and other necessary board-level hardware. It is
the developer’s responsibility to customize this configuration file with the proper directives for his
own board. The details on the configuration command syntax can be found in the JTAG probe’s
documentation. However, only the embedded developer can create the unique configuration file
required for a given board design. This requires detailed knowledge of the CPU and board-level
design features. Much like creating a custom Linux port for a new board, there is no shortcut or
substitute for this task.

Debugging Embedded Linux Page 54 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

Appendix F, “Sample BDI-2000 Configuration File,” contains a sample Abatron configuration file
for a custom board based on the Freescale Semiconductor MPC5200 embedded controller. In that
appendix, you can see the necessary setup for a custom board. Notice the liberal use of comments
describing various registers and initialization details. This makes it easier to update and maintain
over time, and it can help you to get it right the first time.

Hardware probes are generally used in two ways. Most have a user interface of some type that
enables the developer to use features of the probe. Examples of this are to program Flash or down-
load binary images. The second usage is as a front end to gdb or other source-level debuggers. We
demonstrate both usage scenarios.

14.4.1 Programming Flash Using a JTAG Probe
Many hardware probes include the capability to program a wide variety of Flash memory chips.
The Abatron BDI-2000 is no exception. The BDI-2000 configuration file includes a [FLASH] section
to define the characteristics of the target Flash. Refer to Appendix F for a sample. The [FLASH]

section defines attributes of the Flash chip as used in a particular design, such as the chip type, the
size of the device, and its data bus width. Also defined are the location in memory and some way
to describe the chip’s storage organization.

When updating one portion of the Flash, you often want to preserve the contents of other
portions of the same Flash. In this case, your hardware probe must have some way to limit the
sectors that are erased. In the case of the Abatron unit, this is done by adding a line starting with
the keyword ERASE for each sector to be erased. When the erase command is issued to the Abatron
unit via its telnet user interface, all sectors defined with an ERASE specification are erased. Listing

55 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 55 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

14-20 demonstrates erasing a portion of Flash on a target board and subsequently programming a
new U-Boot bootloader image.

LISTING 14-20 Erase and Program Flash

$ telnet bdi

Trying 192.168.1.129...

Connected to bdi (192.168.1.129).

Escape character is '^]'.

BDI Debugger for Embedded PowerPC

=================================

... (large volume of help text)

uei> erase

Erasing flash at 0xfff00000

Erasing flash at 0xfff10000

Erasing flash at 0xfff20000

Erasing flash at 0xfff30000

Erasing flash at 0xfff40000

Erasing flash passed

uei> prog 0xfff00000 u-boot.bin BIN

Programming u-boot.bin , please wait

Programming flash passed

uei>

First we establish a telnet session to the Abatron BDI-2000. After some initialization, we are
presented with a command prompt. When the erase command is issued, the Abatron displays a

56 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 56 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

line of output for each section defined in the configuration file. With the configuration shown
in Appendix F, we defined five erase sectors. This reserves up to 256KB of space for the U-Boot
bootloader binary.

The prog command is shown with all three of its optional parameters. These specify the location in
memory where the new image is to be loaded, the name of the image file, and the format of the
file—in this case, a binary file. You can specify these parameters in the BDI-2000 configuration file.
In this case, the command reduces to simply prog without parameters.

This example only scratches the surface of these two BDI-2000 commands. Many more combina-
tions of usage and capabilities are supported. Each hardware JTAG probe has its own way to specify
Flash erasure and programming capabilities. Consult the documentation for your particular device
for the specifics.

14.4.2 Debugging with a JTAG Probe
Instead of interfacing directly with a JTAG probe via its user interface, many JTAG probes can
interface with your source-level debugger. By far the most popular debugger supported by hard-
ware probes is the gdb debugger. In this usage scenario, gdb is instructed to begin a debug session
with the target via an external connection, usually an Ethernet connection. Rather than communi-
cate directly with the JTAG probe via a user interface, the debugger passes commands back and
forth between itself and the JTAG probe. In this model, the JTAG probe uses the gdb remote proto-
col to control the hardware on behalf of the debugger. Refer again to Figure 14-6 for connection
details.

57 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 57 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

JTAG probes are especially useful for source-level debugging of bootloader and early startup code.
In this example, we demonstrate the use of gdb and an Abatron BDI-2000 for debugging portions
of the U-Boot bootloader on a PowerPC target board.

Many processors contain debugging registers that include the capability to set traditional address
breakpoints (stop when the program reaches a specific address) as well as data breakpoints (stop on
conditional access of a specified memory address). When debugging code resident in read-only
memory such as Flash, this is the only way to set a breakpoint. However, these registers are typi-
cally limited. Many processors contain only one or two such registers. This limitation must be
understood before using hardware breakpoints. The following example demonstrates this.

Using a setup such as that shown in Figure 14-6, assume that our target board has U-Boot stored
in Flash. When we presented bootloaders in Chapter 7, you learned that U-Boot and other boot-
loaders typically copy themselves into RAM as soon as possible after startup. This is because
hardware read (and write) cycles from RAM are orders of magnitude faster than typical read-only
memory devices such as Flash. This presents two specific debugging challenges. First, we cannot
modify the contents of read-only memory (to insert a software breakpoint), so we must rely on
processor-supported breakpoint registers for this purpose.

The second challenge comes from the fact that only one of the execution contexts (Flash or RAM)
can be represented by the ELF executable file from which gdb reads its symbolic debugging infor-
mation. In the case of U-Boot, it is linked for the Flash environment where it is initially stored.
The early code relocates itself and performs any necessary address adjustments. This means that we
need to work with gdb within both of these execution contexts. Listing 14-21 shows an example of
such a debug session.

58 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 58 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

LISTING 14-21 U-Boot Debugging Using JTAG Probe

$ ppc-linux-gdb --silent u-boot
(gdb) target remote bdi:2001
Remote debugging using bdi:2001
_start () at /home/chris/sandbox/u-boot-1.1.4/cpu/mpc5xxx/start.S:91
91 li r21, BOOTFLAG_COLD /* Normal Power-On */
Current language: auto; currently asm

<< Debug a flash resident code snippet >>
(gdb) mon break hard
(gdb) b board_init_f
Breakpoint 1 at 0xfff0457c: file board.c, line 366.
(gdb) c
Continuing.

Breakpoint 1, board_init_f (bootflag=0x7fc3afc) at board.c:366
366 gd = (gd_t *) (CFG_INIT_RAM_ADDR + CFG_GBL_DATA_OFFSET);
Current language: auto; currently c
(gdb) bt
#0 board_init_f (bootflag=0x1) at board.c:366
#1 0xfff0456c in board_init_f (bootflag=0x1) at board.c:353
(gdb) i frame
Stack level 0, frame at 0xf000bf50:
pc = 0xfff0457c in board_init_f (board.c:366); saved pc 0xfff0456c
called by frame at 0xf000bf78
source language c.
Arglist at 0xf000bf50, args: bootflag=0x1

59 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 59 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

Locals at 0xf000bf50, Previous frame’s sp is 0x0

<< Now debug a memory resident code snippet after relocation >>
(gdb) del 1
(gdb) symbol-file
Discard symbol table from '/home/chris/sandbox/u-boot-1.1.4-powerdna/u-boot'? (y or n) y
No symbol file now.
(gdb) add-symbol-file u-boot 0x7fa8000
add symbol table from file "u-boot" at

.text_addr = 0x7fa8000
(y or n) y
Reading symbols from u-boot...done.
(gdb) b board_init_r
Breakpoint 2 at 0x7fac6c0: file board.c, line 608.
(gdb) c
Continuing.

Breakpoint 2, board_init_r (id=0x7f85f84, dest_addr=0x7f85f84) at board.c:608
608 gd = id; /* initialize RAM version of global data */
(gdb) i frame
Stack level 0, frame at 0x7f85f38:
pc = 0x7fac6c0 in board_init_r (board.c:608); saved pc 0x7fac6b0
called by frame at 0x7f85f68
source language c.
Arglist at 0x7f85f38, args: id=0x7f85f84, dest_addr=0x7f85f84
Locals at 0x7f85f38, Previous frame’s sp is 0x0
(gdb) mon break soft
(gdb)

60 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 60 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

Study this example carefully. Some subtleties are definitely worth taking the time to understand.
First, we connect to the Abatron BDI-2000 using the target remote command. The IP address in
this case is that of the Abatron unit, represented by the symbolic name bdi.10 The Abatron BDI-
2000 uses port 2001 for its remote gdb protocol connection.

Next we issue a command to the BDI-2000 using the gdb mon command. The mon command tells
gdb to pass the rest of the command directly to the remote hardware device. Therefore, mon break

hard sets the BDI-2000 into hardware breakpoint mode.

We then set a hardware breakpoint at board_init_f. This is a routine that executes while still
running out of Flash memory at address 0xfff0457c. After the breakpoint is defined, we issue the
continue c command to resume execution. Immediately, the breakpoint at board_init_f is encoun-
tered, and we are free to do the usual debugging activities, including stepping through code and
examining data. You can see that we have issued the bt command to examine the stack backtrace
and the i frame command to examine the details of the current stack frame.

Now we continue execution again, but this time we know that U-Boot copies itself to RAM and
resumes execution from its copy in RAM. So we need to change the debugging context while
keeping the debugging session alive. To accomplish this, we discard the current symbol table
(symbol-file command with no arguments) and load in the same symbol file again using the
add-symbol-file command. This time, we instruct gdb to offset the symbol table to match where
U-Boot has relocated itself to memory. This ensures that our source code and symbolic debugging
information match the actual memory resident image.

After the new symbol table is loaded, we can add a breakpoint to a location that we know will
reside in RAM when it is executed. This is where one of the subtle complications is exposed.

61 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

10 An entry in the host
system’s /etc/hosts
file enables the
symbolic IP address
reference.

Debugging Embedded Linux Page 61 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.4

Hardware-Assisted Debugging

Because we know that U-Boot is currently running in Flash but is about to move itself to RAM and
jump to its RAM-based copy, we must still use a hardware breakpoint. Consider what happens at
this point if we use a software breakpoint. gdb dutifully writes the breakpoint opcode into the spec-
ified memory location, but U-Boot overwrites it when it copies itself to RAM. The net result is that
the breakpoint is never hit, and we begin to suspect that our tools are broken. After U-Boot has
entered the RAM copy and our symbol table has been updated to reflect the RAM-based addresses,
we are free to use RAM-based breakpoints. This is reflected by the last command in Listing 14-21
setting the Abatron unit back to soft breakpoint mode.

Why do we care about using hardware versus software breakpoints? If we had unlimited hardware
breakpoint registers, we wouldn’t. But this is never the case. Here is what it looks like when you
run out of processor-supported hardware breakpoint registers during a debug session:

(gdb) b flash_init

Breakpoint 3 at 0x7fbebe0: file flash.c, line 70.

(gdb) c

Continuing.

warning: Cannot insert breakpoint 3:

Error accessing memory address 0x7fbebe0: Unknown error 4294967295.

Because we are debugging remotely, we aren’t told about the resource constraint until we try to
resume after entering additional breakpoints. This is because of the way gdb handles breakpoints.
When a breakpoint is hit, gdb restores all the breakpoints with the original opcodes for that partic-
ular memory location. When it resumes execution, it restores the breakpoint opcodes at the speci-
fied locations. You can observe this behavior by enabling gdb’s remote debug mode:

(gdb) set debug remote 1

62 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 62 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.5

When It Doesn’t Boot

14.5 When It Doesn’t Boot
One of the most frequently asked questions on the various mailing lists that serve embedded
Linux goes something like this:

I am trying to boot Linux on my board, and I get stuck after this message prints to my console:

“Uncompressing Kernel Image . . . OK.”

Thus starts the long and sometimes frustrating learning curve of embedded Linux! Many things
that can go wrong could lead to this common failure. With some knowledge and a JTAG debugger,
there are ways to determine what went awry.

14.5.1 Early Serial Debug Output
The first tool you might have available is CONFIG_SERIAL_TEXT_DEBUG. This Linux kernel-configura-
tion option adds support for debug messages very early in the boot process. At the present time,
this feature is limited to the PowerPC architecture, but nothing prevents you from duplicating the
functionality in other architectures. Listing 14-22 provides an example of this feature in use on a
PowerPC target using the U-Boot bootloader.

LISTING 14-22 Early Serial Text Debug

Booting image at 00200000 ...

Image Name: Linux-2.6.14

Created: 2005-12-19 22:24:03 UTC

Image Type: PowerPC Linux Kernel Image (gzip compressed)

Data Size: 607149 Bytes = 592.9 kB

63 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 63 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.5

When It Doesn’t Boot

Load Address: 00000000

Entry Point: 00000000

Verifying Checksum ... OK

Uncompressing Kernel Image ... OK

id mach(): done <== Start of messages enabled by

MMU:enter <== CONFIG_SERIAL_TEXT_DEBUG

MMU:hw init

MMU:mapin

MMU:setio

MMU:exit

setup_arch: enter

setup_arch: bootmem

arch: exit

arch: real exit

Using this feature, you can often tell where your board is getting stuck during the boot process. Of
course, you can add your own early debug messages in other places in the kernel. Here is an
example of its usage found in .../arch/ppc/mm/init.c:

/* Map in all of RAM starting at KERNELBASE */

if (ppc_md.progress)

ppc_md.progress("MMU:mapin", 0x301);

mapin_ram();

The AMCC Yosemite platform is an excellent example of this infrastructure. Consult the following
files in the Linux source tree11 for details of how this debugging system is implemented:

64 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

11 All these filenames are
unique, so they can be
found without full path-
name references.

Debugging Embedded Linux Page 64 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.5

When It Doesn’t Boot

File Function Purpose
gen550_dbg.c gen550_init Serial port setup, called by yosemite.c platform-

initialization file
gen550_dbg.c gen550_progress Low-level serial output routine
ibm44x_common.c ibm44x_platform_init Binds platform-specific progress routine to generic ppc

machine-dependent infrastructure

14.5.2 Dumping the printk Log Buffer
When we discussed printk debugging in Section 14.3.6, we pointed out some of the limitations of
this method. printk itself is a very robust implementation. One of its shortcomings is that you
can’t see any printk messages until later in the boot sequence when the console device has been
initialized. Very often, when your board hangs on boot, quite a few messages are stuck in the
printk buffer. If you know where to find them, you can often pinpoint the exact problem that is
causing the boot to hang. Indeed, many times you will discover that the kernel has encountered
an error that led to a call to panic(). The output from panic() has likely been dumped into the
printk buffer, and you can often pinpoint the exact line of offending code.

This is best accomplished with a JTAG debugger, but it is still possible to use a bootloader and its
memory dump capability to display the contents of the printk buffer after a reset. Some corrup-
tion of memory contents might occur as a result of the reset, but log buffer text is usually very
readable.

The actual buffer where printk stores its message text is declared in the printk source file
.../kernel/printk.c.

static char __log_buf[__LOG_BUF_LEN];

65 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 65 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.5

When It Doesn’t Boot

We can easily determine the linked location of this buffer from the Linux kernel map file
System.map.

$ grep __log_buf System.map

c022e5a4 b __log_buf

Now if the system happens to hang upon booting, right after displaying the “Uncompressing Kernel
Image ... OK” message, reboot and use the bootloader to examine the buffer. Because the relation-
ship between kernel virtual memory and physical memory is fixed and constant on a given archi-
tecture, we can do a simple conversion. The address of __log_buf shown earlier is a kernel virtual
address; we must convert it to a physical address. On this particular PowerPC architecture, that
conversion is a simple subtraction of the constant KERNELBASE address, 0xc0000000. This is where we
probe in memory to read the contents, if any, of the printk log buffer.

Listing 14-23 is an example of the listing as displayed by the U-Boot memory dump command.

LISTING 14-23 Dump of Raw printk Log Buffer

=> md 22e5a4

0022e5a4: 3c353e4c 696e7578 20766572 73696f6e <5>Linux version

0022e5b4: 20322e36 2e313320 28636872 6973406a 2.6.13 (chris@

0022e5c4: 756e696f 72292028 67636320 76657273 junior) (gcc

0022e5d4: 696f6e20 332e342e 3320284d 6f6e7461 version 3.4.3 (Monta

0022e5e4: 56697374 6120332e 342e332d 32352e30 Vista 3.4.3-25.0

0022e5f4: 2e37302e 30353031 39363120 32303035 .70.0501961 2005

0022e604: 2d31322d 31382929 20233131 20547565 -12-18)) #11 Tue

0022e614: 20466562 20313420 32313a30 353a3036 Feb 14 21:05:06

66 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 66 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.5

When It Doesn’t Boot

0022e624: 20455354 20323030 360a3c34 3e414d43 EST 2006.<4>AMC

0022e634: 4320506f 77657250 43203434 30455020 C PowerPC 440EP

0022e644: 596f7365 6d697465 20506c61 74666f72 Yosemite Platform.

0022e654: 6d0a3c37 3e4f6e20 6e6f6465 20302074 <7>On node 0

0022e664: 6f74616c 70616765 733a2036 35353336 totalpages: 65536

0022e674: 0a3c373e 2020444d 41207a6f 6e653a20 .<7> DMA zone:

0022e684: 36353533 36207061 6765732c 204c4946 65536 pages, LIF

0022e694: 4f206261 7463683a 33310a3c 373e2020 O batch:31.<7>

=>

0022e6a4: 4e6f726d 616c207a 6f6e653a 20302070 Normal zone: 0

0022e6b4: 61676573 2c204c49 464f2062 61746368 pages, LIFO batch

0022e6c4: 3a310a3c 373e2020 48696768 4d656d20 :1.<7> HighMemzone:

0022e6d4: 7a6f6e65 3a203020 70616765 732c204c 0 pages,

0022e6e4: 49464f20 62617463 683a310a 3c343e42 LIFO batch:1.<4>

0022e6f4: 75696c74 2031207a 6f6e656c 69737473 Built 1 zonelists

0022e704: 0a3c353e 4b65726e 656c2063 6f6d6d61 .<5>Kernel command

0022e714: 6e64206c 696e653a 20636f6e 736f6c65 line: console

0022e724: 3d747479 53302c31 31353230 3020726f =ttyS0,115200

0022e734: 6f743d2f 6465762f 6e667320 72772069 root=/dev/nfs rw

0022e744: 703d6468 63700a3c 343e5049 44206861 ip=dhcp.<4>PID

0022e754: 73682074 61626c65 20656e74 72696573 hash table entries

0022e764: 3a203230 34382028 6f726465 723a2031 : 2048 (order:

0022e774: 312c2033 32373638 20627974 6573290a 11, 32768 bytes).

0022e784: 00000000 00000000 00000000 00000000

0022e794: 00000000 00000000 00000000 00000000

=>

67 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 67 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.5

When It Doesn’t Boot

It’s not very pretty to read, but the data is there. We can see in this particular example that the
kernel crashed someplace after initializing the PID hash table entries. With some additional use of
printk messages, we can begin to close in on the actual source of the crash.

As shown in this example, this is a technique that can be used with no additional tools. You can see
the importance of some kind of early serial port output during boot if you are working on a new
board port.

14.5.3 KGDB on Panic
If KGDB is enabled, the kernel attempts to pass control back to KGDB upon error exceptions. In
some cases, the error itself will be readily apparent. To use this feature, a connection must already
be established between KGDB and gdb. When the exception condition occurs, KGDB emits a Stop
Reply packet to gdb, indicating the reason for the trap into the debug handler, as well as the
address where the trap condition occurred. Listing 14-24 illustrates the sequence.

LISTING 14-24 Trapping Crash on Panic Using KGDB

$ ppc-_4xx-gdb --silent vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

Malformed response to offset query, qOffsets

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

breakinst () at arch/ppc/kernel/ppc-stub.c:825

825 }

(gdb) c

68 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 68 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.6

Chapter Summary

Continuing.

<< KGDB gains control from panic() on crash >>

Program received signal SIGSEGV, Segmentation fault.

0xc0215d6c in pcibios_init () at arch/ppc/kernel/pci.c:1263

1263 *(int *)-1 = 0;

(gdb) bt

#0 0xc0215d6c in pcibios_init () at arch/ppc/kernel/pci.c:1263

#1 0xc020e728 in do_initcalls () at init/main.c:563

#2 0xc020e7c4 in do_basic_setup () at init/main.c:605

#3 0xc0001374 in init (unused=0x20) at init/main.c:677

#4 0xc00049d0 in kernel_thread ()

Previous frame inner to this frame (corrupt stack?)

(gdb)

The crash in this example was contrived by a simple write to an invalid memory location (all
ones). We first establish a connection from gdb to KGDB and allow the kernel to continue to boot.
Notice that we didn’t even bother to set breakpoints. When the crash occurs, we see the line of
offending code and get a nice backtrace to help us determine its cause.

14.6 Chapter Summary
. Linux kernel debugging presents many complexities, especially in a cross-development envi-

ronment. Understanding how to navigate these complexities is the key to successful kernel
debugging.

69 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 69 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.6

Chapter Summary

. KGDB is a very useful kernel-level gdb stub that enables direct symbolic source-level debugging
inside the Linux kernel and device drivers. It uses the gdb remote protocol to communicate to
your host-based cross-gdb.

. Understanding (and minimizing) compiler optimizations helps make sense of seemingly
strange debugger behavior when stepping through compiler-optimized code.

. gdb supports user-defined commands, which can be very useful for automating tedious
debugging tasks such as iterating kernel linked lists and accessing complex variables.

. Kernel-loadable modules present their own challenges to source-level debugging. The module’s
initialization routine can be debugged by placing a breakpoint in module.c at the call to
module->init().

. printk and the Magic SysReq key provide additional tools to help isolate problems during
kernel development and debugging.

. Hardware-assisted debugging via a JTAG probe enables debugging Flash or ROM resident code
where other debugging methods can be cumbersome or otherwise impossible.

. Enabling CONFIG_SERIAL_TEXT_DEBUG on architectures where this feature is supported is a
powerful tool for debugging a new kernel port.

. Examining the printk log_buf often leads to the cause of a silent kernel crash on boot.

. KGDB passes control to gdb on a kernel panic, enabling you to examine a backtrace and isolate
the cause of the kernel panic.

70 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 70 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 14.6

Chapter Summary

14.6.1 Suggestions for Additional Reading
Linux Kernel Development, 2nd Edition
Robert Love
Novell Press, 2005

The Linux Kernel Primer
Claudia Salzberg Rodriguez et al.
Prentice Hall, 2005

“Using the GNU Compiler Collection”
Richard M. Stallman and the GCC Developer Community
GNU Press, a division of Free Software Foundation
http://gcc.gnu.org/onlinedocs/

KGDB Sourceforge home page
http://sourceforge.net/projects/KGDB

Debugging with GDB
Richard Stallman, Roland Pesch, Stan Shebs, et al.
Free Software Foundation
www.gnu.org/software/gdb/documentation/

Tool Interface Standards
DWARF Debugging Information Format Specification
Version 2.0
TIS Committee, May 1995

71 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 71 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.1

Target Debugging

CHAPTER 15

Debugging Embedded Linux Applications

In the previous chapter, we explored the use of GDB for debugging kernel code and code resident
in Flash, such as bootloader code. In this chapter, we continue our coverage of GDB for debugging
application code in user space. We extend our coverage of remote debugging and the tools and
techniques used for this peculiar debugging environment.

15.1 Target Debugging
We already explored several important debugging tools in Chapter 13, “Development Tools.”
strace and ltrace can be used to observe and characterize a process’s behavior and often isolate
problems. dmalloc can help isolate memory leaks and profile memory usage. ps and top are both
useful for examining the state of processes. These relatively small tools are designed to run directly
on the target hardware.

Debugging Linux application code on an embedded system has its own unique challenges.
Resources on your embedded target are often limited. RAM and nonvolatile storage limitations
might prevent you from running target-based development tools. You might not have an Ethernet
port or other high-speed connection. Your target embedded system might not have a graphical
display, keyboard, or mouse.

72 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 72 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.2

Remote (Cross) Debugging

This is where your cross-development tools and an NFS root mount environment can yield large
dividends. Many tools, especially GDB, have been architected to execute on your development
host while actually debugging code on a remote target. GDB can be used to interactively debug
your target code or to perform a postmortem analysis of a core file generated by an application
crash. We covered the details of application core dump analysis in Chapter 13.

15.2 Remote (Cross) Debugging
Cross-development tools were developed primarily to overcome the resource limitations of embed-
ded platforms. A modest-size application compiled with symbolic debug information can easily
exceed several megabytes. With cross-debugging, the heavy lifting can be done on your develop-
ment host. When you invoke your cross-version of GDB on your development host, you pass it
an ELF file compiled with symbolic debug information. On your target, there is no reason you
can’t strip1 the ELF file of all unnecessary debugging info to keep the resulting image to its
minimum size.

We introduced the readelf utility in Chapter 13. In Chapter 14, “Kernel Debugging Techniques,”
we used it to examine the debug information in an ELF file compiled with symbolic debugging
information. Listing 15-1 contains the output of readelf for a relatively small web server applica-
tion compiled for the ARM architecture.

LISTING 15-1 ELF File Debug Info for Example Program

$ xscale_be-readelf -S websdemo

There are 39 section headers, starting at offset 0x3dfd0:

73 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

1 Remember to use your
cross-version of strip,
for example
ppc_82xx-strip.

Debugging Embedded Linux Page 73 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.2

Remote (Cross) Debugging

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .interp PROGBITS 00008154 000154 000013 00 A 0 0 1
[2] .note.ABI-tag NOTE 00008168 000168 000020 00 A 0 0 4
[3] .note.numapolicy NOTE 00008188 000188 000074 00 A 0 0 4
[4] .hash HASH 000081fc 0001fc 00022c 04 A 5 0 4
[5] .dynsym DYNSYM 00008428 000428 000460 10 A 6 1 4
[6] .dynstr STRTAB 00008888 000888 000211 00 A 0 0 1
[7] .gnu.version VERSYM 00008a9a 000a9a 00008c 02 A 5 0 2
[8] .gnu.version_r VERNEED 00008b28 000b28 000020 00 A 6 1 4
[9] .rel.plt REL 00008b48 000b48 000218 08 A 5 11 4
[10] .init PROGBITS 00008d60 000d60 000018 00 AX 0 0 4
[11] .plt PROGBITS 00008d78 000d78 000338 04 AX 0 0 4
[12] .text PROGBITS 000090b0 0010b0 019fe4 00 AX 0 0 4
[13] .fini PROGBITS 00023094 01b094 000018 00 AX 0 0 4
[14] .rodata PROGBITS 000230b0 01b0b0 0023d0 00 A 0 0 8
[15] .ARM.extab PROGBITS 00025480 01d480 000000 00 A 0 0 1
[16] .ARM.exidx ARM_EXIDX 00025480 01d480 000008 00 AL 12 0 4
[17] .eh_frame_hdr PROGBITS 00025488 01d488 00002c 00 A 0 0 4
[18] .eh_frame PROGBITS 000254b4 01d4b4 00007c 00 A 0 0 4
[19] .init_array INIT_ARRAY 0002d530 01d530 000004 00 WA 0 0 4
[20] .fini_array FINI_ARRAY 0002d534 01d534 000004 00 WA 0 0 4
[21] .jcr PROGBITS 0002d538 01d538 000004 00 WA 0 0 4
[22] .dynamic DYNAMIC 0002d53c 01d53c 0000d0 08 WA 6 0 4
[23] .got PROGBITS 0002d60c 01d60c 000118 04 WA 0 0 4
[24] .data PROGBITS 0002d728 01d728 0003c0 00 WA 0 0 8

74 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 74 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.2

Remote (Cross) Debugging

[25] .bss NOBITS 0002dae8 01dae8 0001c8 00 WA 0 0 4
[26] .comment PROGBITS 00000000 01dae8 000940 00 0 0 1
[27] .debug_aranges PROGBITS 00000000 01e428 0004a0 00 0 0 8
[28] .debug_pubnames PROGBITS 00000000 01e8c8 001aae 00 0 0 1
[29] .debug_info PROGBITS 00000000 020376 013d27 00 0 0 1
[30] .debug_abbrev PROGBITS 00000000 03409d 002ede 00 0 0 1
[31] .debug_line PROGBITS 00000000 036f7b 0034a2 00 0 0 1
[32] .debug_frame PROGBITS 00000000 03a420 003380 00 0 0 4
[33] .debug_str PROGBITS 00000000 03d7a0 000679 00 0 0 1
[34] .note.gnu.arm.ide NOTE 00000000 03de19 00001c 00 0 0 1
[35] .debug_ranges PROGBITS 00000000 03de35 000018 00 0 0 1
[36] .shstrtab STRTAB 00000000 03de4d 000183 00 0 0 1
[37] .symtab SYMTAB 00000000 03e5e8 004bd0 10 38 773 4
[38] .strtab STRTAB 00000000 0431b8 0021bf 00 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)
$

You can see from Listing 15-1 that there are many sections containing debug information. There is
also a .comment section that contains more than 2KB (0x940) of information that is not necessary
for the application to function. The size of this example file, including debug information, is more
than 275KB.

$ ls –l websdemo

-rwxrwxr-x 1 chris chris 283511 Nov 8 18:48 websdemo

75 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 75 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.2

Remote (Cross) Debugging

If we strip this file using the strip utility, we can minimize its size to preserve resources on our
target system. Listing 15-2 shows the results.

LISTING 15-2 Strip Target Application

$ xscale_be-strip -s -R .comment -o websdemo-stripped websdemo

$ ls -l websdemo*

-rwxrwxr-x 1 chris chris 283491 Apr 9 09:19 websdemo

-rwxrwxr-x 1 chris chris 123156 Apr 9 09:21 websdemo-stripped

$

Here we strip both the symbolic debug information and the .comment section from the executable
file. We specify the name of the stripped binary using the -o command-line switch. You can see
that the resulting size of the stripped binary is less than half of its original size. Of course, for
larger applications, this space savings can be even more significant. A recent Linux kernel
compiled with debug information was larger than 18MB. After stripping as in Listing 15-2, the
resulting binary was slightly larger than 2MB!

For debugging in this fashion, you place the stripped version of the binary on your target system
and keep a local unstripped copy on your development workstation containing symbolic informa-
tion needed for debugging. You use gdbserver on your target board to provide an interface back to
your development host where you run the full-blown version of GDB on your nonstripped binary.

15.2.1 gdbserver
Using gdbserver allows you to run GDB from a development workstation rather than on the target
embedded Linux platform. This configuration has obvious benefits. For starters, it is common that

76 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 76 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.2

Remote (Cross) Debugging

your development workstation has far more CPU power, memory, and hard-drive storage than the
embedded platform. In addition, it is common for the source code for your application under
debug to exist on the development workstation and not on the embedded platform.

gdbserver is a small program that runs on the target board and allows remote debugging of a
process on the board. It is invoked on the target board specifying the program to be debugged, as
well as an IP address and port number on which it will listen for connection requests from GDB.
Listing 15-3 shows the startup sequence on the target board.

LISTING 15-3 Starting gdbserver on Target Board

$ gdbserver localhost:2001 websdemo-stripped

Process websdemo-stripped created; pid = 197

Listening on port 2001

This particular example starts gdbserver configured to listen for an Ethernet TCP/IP connection on
port 2001, ready to debug our stripped binary program called websdemo-stripped.

From our development workstation, we launch GDB, passing it the name of the binary executable
containing symbolic debug information that we want to debug as an argument. After GDB starts
up, we issue a command to connect to the remote target board. Listing 15-4 shows this sequence.

LISTING 15-4 Starting Remote GDB Session

$ xscale_be-gdb -q websdemo

(gdb) target remote 192.168.1.141:2001

Remote debugging using 192.168.1.141:2001

0x40000790 in ?? ()

77 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 77 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.2

Remote (Cross) Debugging

(gdb) p main <<<< display address of main function

$1 = {int (int, char **)} 0x12b68 <main>

(gdb) b main <<<< Place breakpoint at main()

Breakpoint 1 at 0x12b80: file main.c, line 72.

(gdb)

The sequence in Listing 15-4 invokes cross-gdb on your development host. When GDB is running,
we issue the gdb target remote command. This command causes GDB to initiate a TCP/IP connec-
tion from your development workstation to your target board, with the indicated IP address on
port 2001. When gdbserver accepts the connection request, it prints a line similar to this:

Remote debugging from host 192.168.0.10

Now GDB is connected to the target board’s gdbserver process, ready to accept commands from
GDB. The rest of the session is exactly the same as if you were debugging an application locally.
This is a powerful tool, allowing you to use the power of your development workstation for the
debug session, leaving only a small, relatively unobtrusive GDB stub and your program being
debugged on the target board. In case you were wondering, gdbserver for this particular ARM
target is only 54KB.

root@coyote:~# ls -l /usr/bin/gdbserver

-rwxr-xr-x 1 root root 54344 Jul 23 2005 /usr/bin/gdbserver

There is one caveat, and it is the subject of a frequently asked question (FAQ) on many mailing
lists. You must be using a GDB on your development host that was configured as a cross-debugger.
It is a binary program that runs on your development workstation but understands binary
executable images compiled for another architecture. This is an important and frequently

78 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 78 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.2

Remote (Cross) Debugging

overlooked fact. You cannot debug a PowerPC target with a native GDB such as that found in a
typical Red Hat Linux installation. You must have a GDB configured for your host and target
combination.

When GDB is invoked, it displays a banner consisting of several lines of information and then
displays its compiled configuration. Listing 15-5 is an example of the GDB used for some examples
in this book, which is part of an embedded Linux distribution provided by MontaVista Software
configured for PowerPC cross-development.

LISTING 15-5 Invocation of cross-gdb

$ ppc_82xx-gdb

GNU gdb 6.0 (MontaVista 6.0-8.0.4.0300532 2003-12-24)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and

you are welcome to change it and/or distribute copies of it under

certain conditions. Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for

details.

This GDB was configured as "--host=i686-pc-linux-gnu

--target=powerpc-hardhat-linux".

(gdb)

Notice the last lines of this GDB startup message. This is the configuration compiled into this
version of GDB. It was compiled to execute on a Pentium (i686) PC host running GNU/Linux and
to debug binary programs compiled for a PowerPC processor running GNU/Linux. This is specified

79 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 79 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.3

Debugging with Shared Libraries

by the --host and --target variables displayed by the banner text, and is also a part of the config-
uration string passed to ./configure when building GDB.

15.3 Debugging with Shared Libraries
Now that you understand how to invoke a remote debug session using GDB on the host and
gdbserver on the target, we turn our attention to the complexities of shared libraries and debug
symbols. Unless your application is a statically linked executable (linked with the -static linker
command-line switch), many symbols in your application will reference code outside your applica-
tion. Obvious examples include the use of standard C library routines such as fopen, printf,
malloc, and memcpy. Less obvious examples might include calls to application-specific functions,
such as jack_transport_locate() (a routine from the JACK low-latency audio server), which calls a
library function outside the standard C libraries.

To have symbols from these routines available, you must satisfy two requirements for GDB:

. You must have debug versions of the libraries available.

. GDB must know where to find them.

If you don’t have debug versions of the libraries available, you can still debug your application;
you just won’t have any debug information available for library routines called by your applica-
tion. Often this is perfectly acceptable, unless, of course, you are developing a shared library object
as part of your embedded project.

80 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 80 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.3

Debugging with Shared Libraries

Look back at Listing 15-4, where we invoked GDB on a remote target. After GDB connected via the
target remote command, GDB issued a two-line response:

Remote debugging using 192.168.1.141:2001

0x40000790 in ?? ()

This confirms that GDB connected to our target at the indicated IP address and port. GDB then
reports the location of the program counter as 0x40000790. Why do we get question marks
instead of a symbolic location? Because this is the Linux dynamic loader (ld-x.y.z.so), and on this
particular platform, we do not have debug symbols available for this shared library. How do we
know this?

Recall our introduction of the /proc file system from Chapter 9, “File Systems.” One of the more
useful entries was the maps entry (see Listing 9-16, in Chapter 9) in the per-process directory struc-
ture. We know the process ID (PID) of our target application from the gdbserver output in Listing
15-3. Our process was assigned PID 197. Given that, we can see the memory segments in use right
after process startup, as shown in Listing 15-6.

LISTING 15-6 Initial Target Memory Segment Mapping

root@coyote:~# cat /proc/197/maps

00008000-00026000 r-xp 00000000 00:0e 4852444 ./websdemo-stripped

0002d000-0002e000 rw-p 0001d000 00:0e 4852444 ./websdemo-stripped

40000000-40017000 r-xp 00000000 00:0a 4982583 /lib/ld-2.3.3.so

4001e000-40020000 rw-p 00016000 00:0a 4982583 /lib/ld-2.3.3.so

bedf9000-bee0e000 rwxp bedf9000 00:00 0 [stack]

root@coyote:~#

81 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 81 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.3

Debugging with Shared Libraries

Here we see the target websdemo-stripped application occupying two memory segments. The first is
the read-only executable segment at 0x8000, and the second is a read-write data segment at
0x2d000. The third memory segment is the one of interest. It is the Linux dynamic linker’s
executable code segment. Notice that it starts at address 0x40000000. If we investigate further, we
can confirm that GDB is actually sitting at the first line of code for the dynamic linker, before any
code from our own application has been executed. Using our cross version of readelf, we can
confirm the starting address of the linker as follows:

xscale_be-readelf -S ld-2.3.3.so | grep \.text

[9] .text PROGBITS 00000790 000790 012c6c 00 AX 0 0 16

From this data, we conclude that the address GDB reports on startup is the first instruction from
ld-2.3.3.so, the Linux dynamic linker/loader. You can use this technique to get rough ideas of
where your code is if you don’t have symbolic debug information for a process or shared library.

Remember that we are executing this cross readelf command on our development host. Therefore,
the ld-2.3.3.so file, itself an XScale binary object, must be accessible to your development host.
Most typically, this file resides on your development host, and is a component of your embedded
Linux distribution installed on your host.

15.3.1 Shared Library Events in GDB
GDB can alert you to shared library events. This can be useful for understanding your application’s
behavior or the behavior of the Linux loader, or for setting breakpoints in shared library routines
you want to debug or step through. Listing 15-7 illustrates this technique. Normally, the complete
path to the library is displayed. This listing has been edited for better readability.

82 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 82 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.3

Debugging with Shared Libraries

LISTING 15-7 Stopping GDB on Shared Library Events

$ xscale_be-gdb -q websdemo
(gdb) target remote 192.168.1.141:2001
Remote debugging using 192.168.1.141:2001
0x40000790 in ?? ()
(gdb) i shared <<< Display loaded shared libs
No shared libraries loaded at this time.
(gdb) b main <<< Break at main
Breakpoint 1 at 0x12b80: file main.c, line 72.
(gdb) c
Continuing.

Breakpoint 1, main (argc=0x1, argv=0xbec7fdc4) at main.c:72
72 int localvar = 9;
(gdb) i shared
From To Syms Read Shared Object Library
0x40033300 0x4010260c Yes /opt/mvl/.../lib/tls/libc.so.6
0x40000790 0x400133fc Yes /opt/mvl/.../lib/ld-linux.so.3
(gdb) set stop-on-solib-events 1
(gdb) c
Continuing.
Stopped due to shared library event
(gdb) i shared
From To Syms Read Shared Object Library
0x40033300 0x4010260c Yes /opt/mvl/.../lib/tls/libc.so.6
0x40000790 0x400133fc Yes /opt/mvl/.../lib/ld-linux.so.3
0x4012bad8 0x40132104 Yes /opt/mvl/.../libnss_files.so.2
(gdb)

83 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 83 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.3

Debugging with Shared Libraries

When the debug session is first started, of course, no shared libraries are loaded. You can see this
with the first i shared command. This command displays the shared libraries that are currently
loaded. Setting a breakpoint at our application’s main() function, we see that two shared libraries
are now loaded. These are the Linux dynamic linker/loader and the standard C library component
libc.

From here, we issue the set stop-on-solib-event command and continue program execution. When
the application tries to execute a function from another shared library, that library is loaded. In case
you are wondering, the gethostbyname() function is encountered and causes the next shared object
load.

This example illustrates an important cross-development concept. The binary application (ELF
image) running on the target contains information on the libraries it needs to resolve its external
references. We can view this information easily using the ldd command introduced in Chapter 11,
“BusyBox,” and detailed in Chapter 13. Listing 15-8 shows the output of ldd invoked from the
target board.

LISTING 15-8 ldd Executed on Target Board

root@coyote:/workspace# ldd websdemo

libc.so.6 => /lib/tls/libc.so.6 (0x40020000)

/lib/ld-linux.so.3 (0x40000000)

root@coyote:/workspace#

Notice that the paths to the shared libraries on the target are absolute paths starting at /lib on the
root file system. But GDB running on your host development workstation cannot use these paths
to find the libraries. You should realize that to do so would result in your host GDB loading

84 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 84 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.3

Debugging with Shared Libraries

libraries from the wrong architecture. Your host is likely x86, whereas, in this example, the target
is ARM XScale.

If you invoke your cross version of ldd, you will see the paths that were preconfigured into your
toolchain. Your toolchain must have knowledge of where these files exist on your host develop-
ment system.2 Listing 15-9 illustrates this. Again, we have edited the listing for readability; long
paths have been abbreviated.

LISTING 15-9 ldd Executed on Development Host

$ xscale_be-ldd websdemo

libc.so.6 => /opt/mvl/.../xscale_be/target/lib/libc.so.6 (0xdead1000)

ld-linux.so.3 => /opt/mvl/.../xscale_be/target/lib/ld-linux.so.3 (0xdead2000)

$

Your cross toolchain should be preconfigured with these library locations. Not only does your host
GDB need to know where they are located, but, of course, your compiler and linker also need this
knowledge.3 GDB can tell you where it is configured to look for these libraries using the show
solib-absolute-prefix command:

(gdb) show solib-absolute-prefix

Prefix for loading absolute shared library symbol files is

"/opt/mvl/pro/devkit/arm/xscale_be/target".

(gdb)

You can set or change where GDB searches for shared libraries using the GDB commands set
solib-absolute-prefix and set solib-search-path. If you are developing your own shared library

85 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

2 It is certainly possible to
pass these locations to
your compiler, linker, and
debugger for every invo-
cation, but any good
embedded Linux distribu-
tion will configure these
defaults into the tool-
chain as a convenience
to the developer.

3 Of course, your compiler
also needs to know the
location of target files
such as architecture-
specific system and
library header files.

Debugging Embedded Linux Page 85 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.3

Debugging with Shared Libraries

modules or have custom library locations on your system, you can use solib-search-path to
instruct GDB where to look for your libraries. For more details about these and other GDB
commands, consult the online GDB manual referenced at the end of this chapter in Section
15.6.1, “Suggestions for Additional Reading.”

One final note about ldd. You might have noticed the addresses from Listing 15-8 and 15-9
associated with the libraries. ldd displays the load address for the start of these code segments as
they would be if the program were loaded by the Linux dynamic linker/loader. Executed on the
target, the addresses in Listing 15-5 make perfect sense, and we can correlate these with the
/proc/<pid>/maps listing of the running process on the target. Listing 15-10 displays the memory
segments for this target process after it is completely loaded and running.

LISTING 15-10 Memory Segments from /proc/<pid>/maps on Target

root@coyote:~# cat /proc/197/maps

00008000-00026000 r-xp 00000000 00:0e 4852444 /workspace/websdemo-stripped

0002d000-0002e000 rw-p 0001d000 00:0e 4852444 /workspace/websdemo-stripped

0002e000-0005e000 rwxp 0002e000 00:00 0 [heap]

40000000-40017000 r-xp 00000000 00:0a 4982583 /lib/ld-2.3.3.so

40017000-40019000 rw-p 40017000 00:00 0

4001e000-4001f000 r--p 00016000 00:0a 4982583 /lib/ld-2.3.3.so

4001f000-40020000 rw-p 00017000 00:0a 4982583 /lib/ld-2.3.3.so

40020000-4011d000 r-xp 00000000 00:0a 4982651 /lib/tls/libc-2.3.3.so

4011d000-40120000 ---p 000fd000 00:0a 4982651 /lib/tls/libc-2.3.3.so

40120000-40124000 rw-p 000f8000 00:0a 4982651 /lib/tls/libc-2.3.3.so

40124000-40126000 r--p 000fc000 00:0a 4982651 /lib/tls/libc-2.3.3.so

40126000-40128000 rw-p 000fe000 00:0a 4982651 /lib/tls/libc-2.3.3.so

86 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 86 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

40128000-4012a000 rw-p 40128000 00:00 0

4012a000-40133000 r-xp 00000000 00:0a 4982652 /lib/tls/libnss_files-2.3.3.so

40133000-4013a000 ---p 00009000 00:0a 4982652 /lib/tls/libnss_files-2.3.3.so

4013a000-4013b000 r--p 00008000 00:0a 4982652 /lib/tls/libnss_files-2.3.3.so

4013b000-4013c000 rw-p 00009000 00:0a 4982652 /lib/tls/libnss_files-2.3.3.so

becaa000-becbf000 rwxp becaa000 00:00 0 [stack]

root@coyote:~#

Notice the correlation of the target ldd output from Listing 15-8 to the memory segments displayed
in the /proc file system for this process. The start (beginning of .text segment) of the Linux loader
is 0x40000000 and the start of libc is at 0x40020000. These are the virtual addresses where these
portions of the application have been loaded, and are reported by the target invocation of ldd.
However, the load addresses reported by the cross version of ldd in Listing 15-9 (0xdead1000 and
0xdead2000) are there to remind you that these libraries cannot be loaded on your host system
(they are ARM architecture binaries), and the load addresses are simply placeholders.

15.4 Debugging Multiple Tasks
Generally the developer is presented with two different debugging scenarios when dealing with
multiple threads of execution. Processes can exist in their own address space or can share an
address space (and other system resources) with other threads of execution. The former (independ-
ent processes not sharing common address space) must be debugged using separate independent
debug sessions. Nothing prevents you from using gdbserver on multiple processes on your target
system, and using a separate invocation of GDB on your development host to coordinate a debug
session for multiple cooperating but independent processes.

87 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 87 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

15.4.1 Debugging Multiple Processes
When a process being debugged under GDB uses the fork() system call4 to spawn a new process,
GDB can take two courses of action. It can continue to control and debug the parent process, or it
can stop debugging the parent process and attach to the newly formed child process. You can
control this behavior using the set follow-fork-mode command. The two modes are follow parent
and follow child. The default behavior is for GDB to follow the parent. In this case, the child
process executes immediately upon a successful fork.

Listing 15-11 reproduces a snippet of a simple program that forks multiple processes from its
main() routine.

LISTING 15-11 Using fork() to Spawn a Child Process

...

for(i=0; i<MAX_PROCESSES; i++) {

/* Creating child process */

pid[i] = fork(); /* Parent gets non-zero PID */

if (pid[i] == -1) {

perror("fork failed");

exit(1);

}

if (pid[i] == 0) { /* Indicates child's code path */

worker_process(); /* The forked process calls this */

}

}

88 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

4 We will use the term
system call, but fork()
in this context is actually
the C library function
which in turn calls the
Linux sys_fork()
system call.

Debugging Embedded Linux Page 88 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

/* Parent's main control loop */

while (1) {

...

}

This simple loop creates MAX_THREADS new processes using the fork() system call. Each newly
spawned process executes a body of code defined by the function worker_process(). When run
under GDB in the default mode, GDB detects the creation of the new threads of execution
(processes) but remains attached to the parent’s thread of execution. Listing 15-12 illustrates this
GDB session.

LISTING 15-12 GDB in follow-fork-mode = parent

(gdb) target remote 192.168.1.141:2001

0x40000790 in ?? ()

(gdb) b main

Breakpoint 1 at 0x8888: file forker.c, line 104.

(gdb) c

Continuing.

[New Thread 356]

[Switching to Thread 356]

Breakpoint 1, main (argc=0x1, argv=0xbe807dd4) at forker.c:104

104 time(&start_time);

(gdb) b worker_process

Breakpoint 2 at 0x8784: file forker.c, line 45.

(gdb) c

89 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 89 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

Continuing.

Detaching after fork from child process 357.

Detaching after fork from child process 358.

Detaching after fork from child process 359.

Detaching after fork from child process 360.

Detaching after fork from child process 361.

Detaching after fork from child process 362.

Detaching after fork from child process 363.

Detaching after fork from child process 364.

Notice that eight child processes were spawned, with PID values from 357 to 364. The parent
process was instantiated with PID 356. When the breakpoint in main() was hit, we entered a break-
point at the worker_process() routine, which each child process executes upon fork(). Letting the
program continue from main, we see each of the new processes spawned and detached by the
debugger. They never hit the breakpoint because GDB is attached to the main process, which never
executes the worker_process() routine.

If you need to debug each process, you must execute a separate independent GDB session and
attach to the child process after it is forked(). The GDB documentation referenced at the end of
this chapter outlines a useful technique to place a call to sleep() in the child process, giving you
time to attach a debugger to the new process. Attaching to a new process is explained in Section
15.5.2, “Attaching to a Running Process.”

If you simply need to follow the child process, set the follow-fork-mode to follow child before your
parent reaches the fork() system call. Listing 15-13 shows this.

90 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 90 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

LISTING 15-13 GDB in follow-fork-mode = child

(gdb) target remote 192.168.1.141:2001

0x40000790 in ?? ()

(gdb) set follow-fork-mode child

(gdb) b worker_process

Breakpoint 1 at 0x8784: file forker.c, line 45.

(gdb) c

Continuing.

[New Thread 401]

Attaching after fork to child process 402.

[New Thread 402]

[Switching to Thread 402]

Breakpoint 1, worker_process () at forker.c:45

45 int my_pid = getpid();

(gdb) c

Continuing.

Here we see the parent process being instantiated as PID 401. When the first child is spawned by
the fork() system call, GDB detaches silently from the parent thread of execution and attaches to the
newly spawned child process having PID 402. GDB is now in control of the first child process and
honors the breakpoint set at worker_process(). Notice, however, that the other child processes
spawned by the code snippet from Listing 15-11 are not debugged and continue to run to their
own completion.

91 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 91 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

In summary, using GDB in this fashion, you are limited to debugging a single process at a time.
You can debug through the fork() system call, but you have to decide which thread of execution
to follow through the fork() call, either the parent or the child. As mentioned in the introduction
to this section, you can use multiple independent GDB sessions if you must debug more than one
cooperating process at a time.

15.4.2 Debugging Multithreaded Applications
If your application uses the POSIX thread library for its threading functions, GDB has additional
capabilities to handle concurrent debugging of a multithreaded application. The Native Posix
Thread Library (NPTL) has become the de facto standard thread library in use on Linux systems,
including embedded Linux systems. The rest of this discussion assumes that you are using this
thread library.

For this section, we use a demonstration program that spawns a number of threads using the
pthread_create() library function in a simple loop. After the threads are spawned, the main()
routine simply waits for keyboard input to terminate the application. Each thread displays a short
message on the screen and sleeps for a predetermined time. Listing 15-14 shows the startup
sequence on the target board.

LISTING 15-14 Target Threads Demo Startup

root@coyote:/workspace # gdbserver localhost:2001 ./tdemo

Process ./tdemo created; pid = 671

Listening on port 2001

Remote debugging from host 192.168.1.10

^^^^^ Previous three lines displayed by gdbserver

92 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 92 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

tdemo main() entered: My pid is 671

Starting worker thread 0

Starting worker thread 1

Starting worker thread 2

Starting worker thread 3

As in our previous examples, gdbserver prepares the application for running and waits for a
connection from our host-based cross-gdb. When GDB connects, gdbserver reports the connection
with the Remote debugging... message. Now we start GDB on the host and connect. Listing 15-15
reproduces this half of the session.

LISTING 15-15 Host GDB Connecting to Target Threads Demo

$ xscale_be-gdb -q tdemo

(gdb) target remote 192.168.1.141:2001

0x40000790 in ?? ()

(gdb) b tdemo.c:97

Breakpoint 1 at 0x88ec: file tdemo.c, line 97.

(gdb) c

Continuing.

[New Thread 1059]

[New Thread 1060]

[New Thread 1061]

[New Thread 1062]

[New Thread 1063]

[Switching to Thread 1059]

93 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 93 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

Breakpoint 1, main (argc=0x1, argv=0xbefffdd4) at tdemo.c:98

98 int c = getchar();

(gdb)

Here we connect to the target (resulting in the “Remote debugging...” message in Listing 15-14),
set a breakpoint just past the loop where we spawned the new threads, and continue. When the
new thread is created, GDB displays a notice along with the thread ID. Thread 1059 is the tdemo
application, doing its work directly from the main() function. Threads 1060 through 1063 are the
new threads created from the call to pthread_create().

When GDB hits the breakpoint, it displays the message [Switching to Thread 1059], indicating
that this was the thread of execution that encountered the breakpoint. It is the active thread for
the debugging session, referred to as the current thread in the GDB documentation.

GDB enables us to switch between threads and perform the usual debugging operations such as
setting additional breakpoints, examining data, displaying a backtrace, and working with the indi-
vidual stack frames within the current thread. Listing 15-16 provides examples of these operations,
continuing directly with our debugging session started in Listing 15-15.

LISTING 15-16 GDB Operations on Threads

...

(gdb) c

Continuing.

<<< Ctl-C to interrupt program execution

Program received signal SIGINT, Interrupt.

0x400db9c0 in read () from /opt/mvl/.../lib/tls/libc.so.6

94 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 94 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

(gdb) i threads

5 Thread 1063 0x400bc714 in nanosleep ()

from /opt/mvl/.../lib/tls/libc.so.6

4 Thread 1062 0x400bc714 in nanosleep ()

from /opt/mvl/.../lib/tls/libc.so.6

3 Thread 1061 0x400bc714 in nanosleep ()

from /opt/mvl/.../lib/tls/libc.so.6

2 Thread 1060 0x400bc714 in nanosleep ()

from /opt/mvl/.../lib/tls/libc.so.6

* 1 Thread 1059 0x400db9c0 in read ()

from /opt/mvl/.../lib/tls/libc.so.6

(gdb) thread 4 <<< Make Thread 4 the current thread

[Switching to thread 4 (Thread 1062)]

#0 0x400bc714 in nanosleep ()

from /opt/mvl/.../lib/tls/libc.so.6

(gdb) bt

#0 0x400bc714 in nanosleep ()

from /opt/mvl/.../lib/tls/libc.so.6

#1 0x400bc4a4 in __sleep (seconds=0x0) at sleep.c:137

#2 0x00008678 in go_to_sleep (duration=0x5) at tdemo.c:18

#3 0x00008710 in worker_2_job (random=0x5) at tdemo.c:36

#4 0x00008814 in worker_thread (threadargs=0x2) at tdemo.c:67

#5 0x40025244 in start_thread (arg=0xfffffdfc) at pthread_create.c:261

#6 0x400e8fa0 in clone () at../sysdeps/unix/sysv/linux/arm/clone.S:82

#7 0x400e8fa0 in clone () at../sysdeps/unix/sysv/linux/arm/clone.S:82

(gdb) frame 3

95 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 95 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.4

Debugging Multiple Tasks

#3 0x00008710 in worker_2_job (random=0x5) at tdemo.c:36

36 go_to_sleep(random);

(gdb) l <<< Generate listing of where we are

31 }

32

33 static void worker_2_job(int random)

34 {

35 printf("t2 sleeping for %d\n", random);

36 go_to_sleep(random);

37 }

38

39 static void worker_3_job(int random)

40 {

(gdb)

A few points are worth mentioning. GDB assigns its own integer value to each thread and uses
these values to reference the individual threads. When a breakpoint is hit in a thread, all threads
within the process are halted for examination. GDB marks the current thread with an asterisk (*).
You can set unique breakpoints within each thread—assuming, of course, that they exist in a
unique context. If you set a breakpoint in a common portion of code where all threads execute,
the thread that hits the breakpoint first is arbitrary.

The GDB user documentation referenced at the end of this chapter contains more useful informa-
tion related to debugging in a multithreaded environment.

96 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 96 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.5

Additional Remote Debug Options

15.4.3 Debugging Bootloader/Flash Code
Debugging Flash resident code presents its own unique challenges. The most obvious limitation is
the way in which GDB and gdbserver cooperate in setting target breakpoints. When we discussed
the GDB remote serial protocol in Chapter 14, you learned how breakpoints are inserted into an
application.5 GDB replaces the opcode at the breakpoint location with an architecture-specific
opcode that passes control to the debugger. However, in ROM or Flash, GDB cannot overwrite the
opcode, so this method of setting breakpoints is useless.

Most modern processors contain some number of debug registers that can be used to get around
this limitation. These capabilities must be supported by architecture- and processor-specific hard-
ware probes or stubs. The most common technique for debugging Flash and ROM resident code is
to use JTAG hardware probes. These probes support the setting of processor-specific hardware
breakpoints. This topic was covered in detail in Chapter 14. Refer back to Section 14.4.2,
“Debugging with a JTAG Probe,” for details.

15.5 Additional Remote Debug Options
Sometimes you might want to use a serial port for remote debugging. For other tasks, you might
find it useful to attach the debugger to a process that is already running. These simple but useful
operations are detailed here.

15.5.1 Debugging via Serial Port
Debugging via serial port is quite straightforward. Of course, you must have a serial port available
on your target that is not being used by another process, such as a serial console. The same

97 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

5 Refer back to Listing
14-5 in Chapter 14.

Debugging Embedded Linux Page 97 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.5

Additional Remote Debug Options

limitation applies to your host. A serial port must be available. If both of these conditions can be
met, simply replace the IP:Port specification passed to gdbserver with a serial port specification.
Use the same technique when connecting to your target from your host-based GDB.

On your target:

root@coyote:/workspace # gdbserver /dev/ttyS0 ./tdemo

Process ./tdemo created; pid = 698

Remote debugging using /dev/ttyS0

From your host:

$ xscale_be-gdb -q tdemo

(gdb) target remote /dev/ttyS1

Remote debugging using /dev/ttyS1

0x40000790 in ?? ()

15.5.2 Attaching to a Running Process
It is often advantageous to connect to a process to examine its state while it is running instead of
killing the process and starting it again. With gdbserver, it is trivial:

root@coyote:/workspace # ps ax | grep tdemo

1030 pts/0 Sl+ 0:00 ./tdemo

root@coyote:/workspace # gdbserver localhost:2001 --attach 1030

Attached; pid = 1030

Listening on port 2001

98 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 98 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.6

Chapter Summary

When you are finished examining the process under debug, you can issue the gdb detach

command. This detaches the gdbserver from the application on the target and terminates the
debug session. The application continues where it left off. This is a very useful technique for
examining a running program. Be aware, though, that when you attach to the process, it halts,
waiting for instructions from you. It will not resume execution until instructed to do so, using
either the continue command or the detach command. Also note that you can use the detach

command at almost any time to end the debug session and leave the application running on
the target.

15.6 Chapter Summary
. Remote (cross) debugging enables symbolic debugging using host development workstation

resources for the heavy lifting, preserving often scarce target resources.

. gdbserver runs on the target system and acts as the glue between the cross-gdb running on a
development host and the process being debugged on the target.

. GDB on the host typically uses IP connections via Ethernet to send and receive commands to
gdbserver running on the target. The GDB remote serial protocol is used between GDB and
gdbserver.

. GDB can halt on shared library events and can automatically load shared library symbols
when available. Your toolchain should be configured for the default paths on your cross-devel-
opment system. Alternatively, you can use GDB commands to set the search paths for shared
library objects.

99 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 99 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SECTION 15.6

Chapter Summary

. GDB can be used to debug multiple independent processes via multiple concurrent GDB
sessions.

. GDB can be configured to follow a forked process on a fork() system call. Its default mode is
to continue to debug the parent—that is, the caller of fork().

. GDB has features to facilitate debugging multithreaded applications written to POSIX thread
APIs. The current default Linux thread library is the Native Posix Threads Library (NPTL).

. GDB supports attaching to and detaching from an already running process.

15.6.1 Suggestions for Additional Reading
GDB: The GNU Project Debugger
Online Documentation
http://sourceware.org/gdb/onlinedocs/

GDB Pocket Reference
Arnold Robbins
O’Reilly Media, 2005

100 Debugging Embedded Linux
by Christopher Hallinan

© 2007 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

Debugging Embedded Linux Page 100 Return to Table of Contents

Debugging Embedded Linux
Debugging Embedded Linux By Christopher Hallinan ISBN: 0131580132 Publisher:
Prentice Hall

Prepared for eliad lubovsky, Safari ID: eliad.lubovsky@alcatel-lucent.com
Licensed by eliad lubovsky

Print Publication Date: 2006/08/30 User number: 1105053 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Copyright
	
	Kernel Debugging Techniques
	Challenges to Kernel Debugging
	Using KGDB for Kernel Debugging
	Debugging the Linux Kernel
	Hardware-Assisted Debugging
	When It Doesn’t Boot
	Chapter Summary

	Debugging Embedded Linux Applications
	Target Debugging
	Remote (Cross) Debugging
	Debugging with Shared Libraries
	Debugging Multiple Tasks
	Additional Remote Debug Options
	Chapter Summary

